Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CDK20 interacts with KEAP1 to activate NRF2 and promotes radiochemoresistance in lung cancer cells

Abstract

Radiochemoresistance is considered the main cause of local recurrence and distant metastasis in lung cancer. However, the underlying mechanisms of radiochemoresistance remain to be uncovered. In this study, we determine the functions of cell cycle-related kinase (CDK20) in radiochemoresistance. CDK20 is a newly identified protein kinase, which plays critical roles in cell growth and proliferation in several types of cancer. Using tandem affinity purification technology, we provide evidences that CDK20 binds to the ubiquitin ligase Kelch-like ECH-associated protein 1 (KEAP1), which targets transcriptional factor nuclear factor erythroid-2-related factor 2 (NRF2) for degradation. We show that this interaction is mediated by an evolutionarily conserved ETGE motif on CDK20. Furthermore, we demonstrate that CDK20 competes with NRF2 for KEAP1 binding, enhances the transcriptional activity of NRF2 and lowers the cellular reactive oxygen species level. Moreover, CDK20-depleted cells display impaired cell proliferation, defective G2/M arrest and increased radiochemosensitivity in lung cancer. These phenotypes induced by CDK20 knockdown are partially dependent on NRF2 inactivation. More importantly, CDK20 is overexpressed in human lung cancer tissues, as determined by immunostaining. Collectively, our results suggest that CDK20 positively modulate the KEAP1–NRF2 cytoprotective pathway to regulate tumor progression and radiochemoresistance, implying that CDK20 is a novel, promising therapeutic target for lung cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F et al. Cancer statistics in China, 2015. CA Cancer J Clin 2016; 66: 115–132.

    Article  Google Scholar 

  2. Addario BJ . Lung cancer is a global epidemic and requires a global effort. Ann Transl Med 2015; 3: 26.

    PubMed  PubMed Central  Google Scholar 

  3. Herbst RS, Heymach JV, Lippman SM . Lung cancer. N Engl J Med 2008; 359: 1367–1380.

    Article  CAS  Google Scholar 

  4. Mikell JL, Gillespie TW, Hall WA, Nickleach DC, Liu Y, Lipscomb J et al. Postoperative radiotherapy is associated with better survival in non-small cell lung cancer with involved N2 lymph nodes: results of an analysis of the National Cancer Data Base. J Thorac Oncol 2015; 10: 462–471.

    Article  CAS  Google Scholar 

  5. Arriagada R, Bergman B, Dunant A, Le Chevalier T, Pignon JP, Vansteenkiste J et al. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med 2004; 350: 351–360.

    Article  Google Scholar 

  6. Mitsuishi Y, Motohashi H, Yamamoto M . The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol 2012; 2: 200.

    Article  Google Scholar 

  7. Jaramillo MC, Zhang DD . The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 2013; 27: 2179–2191.

    Article  CAS  Google Scholar 

  8. O'Connell MA, Hayes JD . The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic. Biochem Soc Trans 2015; 43: 687–689.

    Article  CAS  Google Scholar 

  9. Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S . Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 2002; 62: 5196–5203.

    CAS  PubMed  Google Scholar 

  10. Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW et al. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest 2004; 114: 1248–1259.

    Article  CAS  Google Scholar 

  11. McMahon M, Itoh K, Yamamoto M, Hayes JD . Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem 2003; 278: 21592–21600.

    Article  CAS  Google Scholar 

  12. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 2004; 24: 7130–7139.

    Article  CAS  Google Scholar 

  13. Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO et al. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 2006; 3: e420.

    Article  Google Scholar 

  14. Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P, Bodas M et al. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol Cancer Ther 2010; 9: 336–346.

    Article  CAS  Google Scholar 

  15. Lee S, Lim MJ, Kim MH, Yu CH, Yun YS, Ahn J et al. An effective strategy for increasing the radiosensitivity of human lung cancer cells by blocking Nrf2-dependent antioxidant responses. Free Radic Biol Med 2012; 53: 807–816.

    Article  Google Scholar 

  16. Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G et al. Cyclin-dependent kinases: a family portrait. Nat Cell Biol 2009; 11: 1275–1276.

    Article  CAS  Google Scholar 

  17. Malumbres M . Cyclin-dependent kinases. Genome Biol 2014; 15: 122.

    Article  Google Scholar 

  18. Liu Y, Wu C, Galaktionov K . p42, a novel cyclin-dependent kinase-activating kinase in mammalian cells. J Biol Chem 2004; 279: 4507–4514.

    Article  CAS  Google Scholar 

  19. Wohlbold L, Larochelle S, Liao JC, Livshits G, Singer J, Shokat KM et al. The cyclin-dependent kinase (CDK) family member PNQALRE/CCRK supports cell proliferation but has no intrinsic CDK-activating kinase (CAK) activity. Cell Cycle 2006; 5: 546–554.

    Article  CAS  Google Scholar 

  20. Tian Y, Wan H, Tan G . Cell cycle-related kinase in carcinogenesis. Oncol Lett 2012; 4: 601–606.

    Article  CAS  Google Scholar 

  21. Ng SS, Cheung YT, An XM, Chen YC, Li M, Li GH et al. Cell cycle-related kinase: a novel candidate oncogene in human glioblastoma. J Natl Cancer Inst 2007; 99: 936–948.

    Article  CAS  Google Scholar 

  22. Feng H, Cheng AS, Tsang DP, Li MS, Go MY, Cheung YS et al. Cell cycle-related kinase is a direct androgen receptor-regulated gene that drives beta-catenin/T cell factor-dependent hepatocarcinogenesis. J Clin Invest 2011; 121: 3159–3175.

    Article  CAS  Google Scholar 

  23. Yu Z, Gao YQ, Feng H, Lee YY, Li MS, Tian Y et al. Cell cycle-related kinase mediates viral-host signalling to promote hepatitis B virus-associated hepatocarcinogenesis. Gut 2014; 63: 1793–1804.

    Article  CAS  Google Scholar 

  24. Feng H, Yu Z, Tian Y, Lee YY, Li MS, Go MY et al. A CCRK-EZH2 epigenetic circuitry drives hepatocarcinogenesis and associates with tumor recurrence and poor survival of patients. J Hepatol 2015; 62: 1100–1111.

    Article  CAS  Google Scholar 

  25. Wu GQ, Xie D, Yang GF, Liao YJ, Mai SJ, Deng HX et al. Cell cycle-related kinase supports ovarian carcinoma cell proliferation via regulation of cyclin D1 and is a predictor of outcome in patients with ovarian carcinoma. Int J Cancer 2009; 125: 2631–2642.

    Article  CAS  Google Scholar 

  26. An X, Ng SS, Xie D, Zeng YX, Sze J, Wang J et al. Functional characterisation of cell cycle-related kinase (CCRK) in colorectal cancer carcinogenesis. Eur J Cancer 2010; 46: 1752–1761.

    Article  CAS  Google Scholar 

  27. Xu S, Li X, Gong Z, Wang W, Li Y, Nair BC et al. Proteomic analysis of the human cyclin-dependent kinase family reveals a novel CDK5 complex involved in cell growth and migration. Mol Cell Proteomics 2014; 13: 2986–3000.

    Article  CAS  Google Scholar 

  28. Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M et al. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 2008; 68: 1303–1309.

    Article  CAS  Google Scholar 

  29. Homma S, Ishii Y, Morishima Y, Yamadori T, Matsuno Y, Haraguchi N et al. Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin Cancer Res 2009; 15: 3423–3432.

    Article  CAS  Google Scholar 

  30. Chio II, Jafarnejad SM, Ponz-Sarvise M, Park Y, Rivera K, Palm W et al. NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell 2016; 166: 963–976.

    Article  CAS  Google Scholar 

  31. Xu Y, Fang F, Miriyala S, Crooks PA, Oberley TD, Chaiswing L et al. KEAP1 is a redox sensitive target that arbitrates the opposing radiosensitive effects of parthenolide in normal and cancer cells. Cancer Res 2013; 73: 4406–4417.

    Article  CAS  Google Scholar 

  32. Zhou S, Ye W, Shao Q, Zhang M, Liang J . Nrf2 is a potential therapeutic target in radioresistance in human cancer. Crit Rev Oncol Hematol 2013; 88: 706–715.

    Article  Google Scholar 

  33. Bai X, Chen Y, Hou X, Huang M, Jin J . Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev 2016; 48: 541–567.

    Article  CAS  Google Scholar 

  34. Zhan L, Zhang H, Zhang Q, Woods CG, Chen Y, Xue P et al. Regulatory role of KEAP1 and NRF2 in PPARgamma expression and chemoresistance in human non-small-cell lung carcinoma cells. Free Radic Biol Med 2012; 53: 758–768.

    Article  CAS  Google Scholar 

  35. Ma J, Cai H, Wu T, Sobhian B, Huo Y, Alcivar A et al. PALB2 interacts with KEAP1 to promote NRF2 nuclear accumulation and function. Mol Cell Biol 2012; 32: 1506–1517.

    Article  CAS  Google Scholar 

  36. Yang Y, Roine N, Makela TP . CCRK depletion inhibits glioblastoma cell proliferation in a cilium-dependent manner. EMBO rep 2013; 14: 741–747.

    Article  CAS  Google Scholar 

  37. Solis LM, Behrens C, Dong W, Suraokar M, Ozburn NC, Moran CA et al. Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin Cancer Res 2010; 16: 3743–3753.

    Article  CAS  Google Scholar 

  38. Lee DF, Kuo HP, Liu M, Chou CK, Xia W, Du Y et al. KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol Cell 2009; 36: 131–140.

    Article  CAS  Google Scholar 

  39. Camp ND, James RG, Dawson DW, Yan F, Davison JM, Houck SA et al. Wilms tumor gene on X chromosome (WTX) inhibits degradation of NRF2 protein through competitive binding to KEAP1 protein. J Biol Chem 2012; 287: 6539–6550.

    Article  CAS  Google Scholar 

  40. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 2010; 12: 213–223.

    Article  CAS  Google Scholar 

  41. Hast BE, Goldfarb D, Mulvaney KM, Hast MA, Siesser PF, Yan F et al. Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination. Cancer Res 2013; 73: 2199–2210.

    Article  CAS  Google Scholar 

  42. Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J et al. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 2008; 68: 7975–7984.

    Article  CAS  Google Scholar 

  43. Xu S, Feng Z, Zhang M, Wu Y, Sang Y, Xu H et al. hSSB1 binds and protects p21 from ubiquitin-mediated degradation and positively correlates with p21 in human hepatocellular carcinomas. Oncogene 2011; 30: 2219–2229.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81301719 to SX), Open Funds of State Key Laboratory of Oncology in South China (HN2014-10 to SX), a grant from the Wuhan Science and Technology Bureau (2015060101010041 to SX), the National Natural Science Foundation of China (81372435 to KY) and Department of Defense Era of Hope research scholar award (W81XWH-09-1-0409 to JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K Yang or S Xu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Ma, J., Lu, Y. et al. CDK20 interacts with KEAP1 to activate NRF2 and promotes radiochemoresistance in lung cancer cells. Oncogene 36, 5321–5330 (2017). https://doi.org/10.1038/onc.2017.161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.161

This article is cited by

Search

Quick links