Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tumour-processed osteopontin and lactadherin drive the protumorigenic reprogramming of microglia and glioma progression

Abstract

Tumour tissue is infiltrated by myeloid cells that are reprogrammed into alternatively activated/regenerative (M2) macrophages. The contribution of major signalling pathways and their modulators/targets involved in the macrophage reprogramming is poorly known. Glioblastoma (malignant brain tumour) attracts and reprograms brain-resident microglia and peripheral macrophages into cells that increase invasion, angiogenesis and suppress antitumour immunity. Using a ‘function-first’ approach and glioma secretome proteomics we identified osteopontin and lactadherin as proteins that cooperatively activate amoeboid transformation, phagocytosis and motility of primary microglia cultures via integrins and FAK-Akt (focal adhesion kinase-Akt) signalling. A synthetic peptide interfering with integrin ligands blocks glioma–microglia communication, functional activation and M2 gene expression. We found that osteopontin/secreted phosphoprotein 1 (Spp1) produced by non-transformed cells acts as a proinflammatory factor inducing inflammatory signalling and M1 genes, and counteracts the action of lactadherin. Using constructs encoding functional mutants of osteopontin, we demonstrated sequential processing of Spp1 by thrombin and matrix metalloproteinase-3 and/or -7 (MMP-3 and/or -7) in glioma cells, which generates a microglia-activating form devoid of the inflammatory activity, while retaining the M2 reprogramming potential. A similar form of osteopontin is secreted by human glioma cells but not normal human astrocytes. Knockdown of osteopontin or lactadherin in glioma cells reduces intracranial glioma growth, blocks amoeboid transformation of myeloid cells and affects M2 reprogramming of microglia/macrophages. Our findings demonstrate how glioma cells misuse macrophage-activating signals and redesign primarily proinflammatory signals towards their advantage to induce M2 reprogramming of tumour-infiltrating brain macrophages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Mantovani A, Sica A . Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 2010; 22: 231–237.

    Article  CAS  Google Scholar 

  2. Noy R, Pollard JW . Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014; 41: 49–61.

    Article  CAS  Google Scholar 

  3. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014; 41: 14–20.

    Article  CAS  Google Scholar 

  4. Heusinkveld M, de Vos van Steenwijk PJ, Goedemans R, Ramwadhdoebe TH, Gorter A, Welters MJ et al. M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. J Immunol 2011; 187: 1157–1165.

    Article  CAS  Google Scholar 

  5. Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ . CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 2009; 284: 34342–34354.

    Article  CAS  Google Scholar 

  6. Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L et al. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol 2010; 185: 642–652.

    Article  CAS  Google Scholar 

  7. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 2009; 457: 102–106.

    Article  CAS  Google Scholar 

  8. Badie B, Schartner JM . Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery 2000; 46: 957–961; discussion 961–952.

    CAS  PubMed  Google Scholar 

  9. Komohara Y, Ohnishi K, Kuratsu J, Takeya M . Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 2008; 216: 15–24.

    Article  CAS  Google Scholar 

  10. Wei J, Gabrusiewicz K, Heimberger A . The controversial role of microglia in malignant gliomas. Clin Dev Immunol 2013; 2013: 285246.

    Article  Google Scholar 

  11. Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K et al. Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci USA 2009; 106: 12530–12535.

    Article  CAS  Google Scholar 

  12. Sliwa M, Markovic D, Gabrusiewicz K, Synowitz M, Glass R, Zawadzka M et al. The invasion promoting effect of microglia on glioblastoma cells is inhibited by cyclosporin A. Brain 2007; 130: 476–489.

    Article  Google Scholar 

  13. Gabrusiewicz K, Ellert-Miklaszewska A, Lipko M, Sielska M, Frankowska M, Kaminska B . Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One 2011; 6: e23902.

    Article  CAS  Google Scholar 

  14. Hussain SF, Heimberger AB . Immunotherapy for human glioma: innovative approaches and recent results. Expert Rev Anticancer Ther 2005; 5: 777–790.

    Article  CAS  Google Scholar 

  15. Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB . The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro-Oncology 2006; 8: 261–279.

    Article  CAS  Google Scholar 

  16. Hussain SF, Yang D, Suki D, Grimm E, Heimberger AB . Innate immune functions of microglia isolated from human glioma patients. J Transl Med 2006; 4: 15.

    Article  Google Scholar 

  17. Sielska M, Przanowski P, Wylot B, Gabrusiewicz K, Maleszewska M, Kijewska M et al. Distinct roles of CSF family cytokines in macrophage infiltration and activation in glioma progression and injury response. J Pathol 2013; 230: 310–321.

    Article  CAS  Google Scholar 

  18. Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK et al. Glioma-associated cancer-initiating cells induce immunosuppression. Clin Cancer Res 2010; 16: 461–473.

    Article  CAS  Google Scholar 

  19. Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A, Sliwa M et al. Microglia-derived TGF-beta as an important regulator of glioblastoma invasion—an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene 2008; 27: 918–930.

    Article  CAS  Google Scholar 

  20. Ye XZ, Xu SL, Xin YH, Yu SC, Ping YF, Chen L et al. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway. J Immunol 2012; 189: 444–453.

    Article  CAS  Google Scholar 

  21. Ellert-Miklaszewska A, Dabrowski M, Lipko M, Sliwa M, Maleszewska M, Kaminska B . Molecular definition of the pro-tumorigenic phenotype of glioma-activated microglia. Glia 2013; 61: 1178–1190.

    Article  Google Scholar 

  22. Platten M, Kretz A, Naumann U, Aulwurm S, Egashira K, Isenmann S et al. Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 2003; 54: 388–392.

    Article  CAS  Google Scholar 

  23. Okada M, Saio M, Kito Y, Ohe N, Yano H, Yoshimura S et al. Tumor-associated macrophage/microglia infiltration in human gliomas is correlated with MCP-3, but not MCP-1. Int J Oncol 2009; 34: 1621–1627.

    CAS  PubMed  Google Scholar 

  24. Held-Feindt J, Hattermann K, Muerkoster SS, Wedderkopp H, Knerlich-Lukoschus F, Ungefroren H et al. CX3CR1 promotes recruitment of human glioma-infiltrating microglia/macrophages (GIMs). Exp Cell Res 2010; 316: 1553–1566.

    Article  CAS  Google Scholar 

  25. Ku MC, Wolf SA, Respondek D, Matyash V, Pohlmann A, Waiczies S et al. GDNF mediates glioblastoma-induced microglia attraction but not astrogliosis. Acta Neuropathol 2013; 125: 609–620.

    Article  CAS  Google Scholar 

  26. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF et al. CSF-1 R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 2013; 19: 1264–1272.

    Article  CAS  Google Scholar 

  27. Raymond A, Ensslin MA, Shur BD . SED1/MFG-E8: a bi-motif protein that orchestrates diverse cellular interactions. J Cell Biochem 2009; 106: 957–966.

    Article  CAS  Google Scholar 

  28. Yamaguchi Y, Shao Z, Sharif S, Du XY, Myles T, Merchant M et al. Thrombin-cleaved fragments of osteopontin are overexpressed in malignant glial tumors and provide a molecular niche with survival advantage. J Biol Chem 2013; 288: 3097–3111.

    Article  CAS  Google Scholar 

  29. Shao Z, Morser J, Leung LL . Thrombin cleavage of osteopontin disrupts a pro-chemotactic sequence for dendritic cells, which is compensated by the release of its pro-chemotactic C-terminal fragment. J Biol Chem 2014; 289: 27146–27158.

    Article  CAS  Google Scholar 

  30. Agnihotri R, Crawford HC, Haro H, Matrisian LM, Havrda MC, Liaw L . Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J Biol Chem 2001; 276: 28261–28267.

    Article  CAS  Google Scholar 

  31. Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C et al. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood 2013; 121: e57–e69.

    Article  CAS  Google Scholar 

  32. Anborgh PH, Mutrie JC, Tuck AB, Chambers AF . Role of the metastasis-promoting protein osteopontin in the tumour microenvironment. J Cell Mol Med 2010; 14: 2037–2044.

    Article  CAS  Google Scholar 

  33. Silvestre JS, Thery C, Hamard G, Boddaert J, Aguilar B, Delcayre A et al. Lactadherin promotes VEGF-dependent neovascularization. Nat Med 2005; 11: 499–506.

    Article  CAS  Google Scholar 

  34. Pello OM, De Pizzol M, Mirolo M, Soucek L, Zammataro L, Amabile A et al. Role of c-Myc in alternative activation of human macrophages and tumor-associated macrophage biology. Blood 2011; 119: 411–421.

    Article  Google Scholar 

  35. Denhardt DT, Noda M, O'Regan AW, Pavlin D, Berman JS . Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 2001; 107: 1055–1061.

    Article  CAS  Google Scholar 

  36. Smith LL, Cheung HK, Ling LE, Chen J, Sheppard D, Pytela R et al. Osteopontin N-terminal domain contains a cryptic adhesive sequence recognized by alpha9beta1 integrin. J Biol Chem 1996; 271: 28485–28491.

    Article  CAS  Google Scholar 

  37. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S . Identification of a factor that links apoptotic cells to phagocytes. Nature 2002; 417: 182–187.

    Article  CAS  Google Scholar 

  38. Grassinger J, Haylock DN, Storan MJ, Haines GO, Williams B, Whitty GA et al. Thrombin-cleaved osteopontin regulates hemopoietic stem and progenitor cell functions through interactions with alpha9beta1 and alpha4beta1 integrins. Blood 2009; 114: 49–59.

    Article  CAS  Google Scholar 

  39. Cook AC, Tuck AB, McCarthy S, Turner JG, Irby RB, Bloom GC et al. Osteopontin induces multiple changes in gene expression that reflect the six 'hallmarks of cancer' in a model of breast cancer progression. Mol Carcinogen 2005; 43: 225–236.

    Article  CAS  Google Scholar 

  40. Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol 2015; 17: 170–182.

    Article  CAS  Google Scholar 

  41. Przanowski P, Dabrowski M, Ellert-Miklaszewska A, Kloss M, Mieczkowski J, Kaza B et al. The signal transducers Stat1 and Stat3 and their novel target Jmjd3 drive the expression of inflammatory genes in microglia. J Mol Med (Berl) 2014; 92: 239–254.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Beata Kaza and Marcin Sliwa for technical assistance. This work was supported by the Grant 2012/04/A/NZ3/00630 (to BK) from the National Science Center (Poland). PG was supported by GA no. 264173 Bio-Imagine and IP2011013171 from the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Kaminska.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellert-Miklaszewska, A., Wisniewski, P., Kijewska, M. et al. Tumour-processed osteopontin and lactadherin drive the protumorigenic reprogramming of microglia and glioma progression. Oncogene 35, 6366–6377 (2016). https://doi.org/10.1038/onc.2016.55

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.55

This article is cited by

Search

Quick links