Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 is essential for p53-null cancer cells

Abstract

The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 (PFKFB4) controls metabolic flux through allosteric regulation of glycolysis. Here we show that p53 regulates the expression of PFKFB4 and that p53-deficient cancer cells are highly dependent on the function of this enzyme. We found that p53 downregulates PFKFB4 expression by binding to its promoter and mediating transcriptional repression via histone deacetylases. Depletion of PFKFB4 from p53-deficient cancer cells increased levels of the allosteric regulator fructose-2,6-bisphosphate, leading to increased glycolytic activity but decreased routing of metabolites through the oxidative arm of the pentose-phosphate pathway. PFKFB4 was also required to support the synthesis and regeneration of nicotinamide adenine dinucleotide phosphate (NADPH) in p53-deficient cancer cells. Moreover, depletion of PFKFB4-attenuated cellular biosynthetic activity and resulted in the accumulation of reactive oxygen species and cell death in the absence of p53. Finally, silencing of PFKFB4-induced apoptosis in p53-deficient cancer cells in vivo and interfered with tumour growth. These results demonstrate that PFKFB4 is essential to support anabolic metabolism in p53-deficient cancer cells and suggest that inhibition of PFKFB4 could be an effective strategy for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Lunt SY, Vander Heiden MG . Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2011; 27: 441–464.

    Article  CAS  Google Scholar 

  2. Kruiswijk F, Labuschagne CF, Vousden KH . p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 2015; 16: 393–405.

    Article  CAS  Google Scholar 

  3. Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 2012; 149: 1269–1283.

    Article  CAS  Google Scholar 

  4. Kawauchi K, Araki K, Tobiume K, Tanaka N . p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol 2008; 10: 611–618.

    Article  CAS  Google Scholar 

  5. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O et al. p53 regulates mitochondrial respiration. Science 2006; 312: 1650–1653.

    Article  CAS  Google Scholar 

  6. Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006; 126: 107–120.

    Article  CAS  Google Scholar 

  7. Hitosugi T, Zhou L, Elf S, Fan J, Kang HB, Seo JH et al. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell 2012; 22: 585–600.

    Article  CAS  Google Scholar 

  8. Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol 2011; 13: 310–316.

    Article  CAS  Google Scholar 

  9. Jiang P, Du W, Mancuso A, Wellen KE, Yang X . Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature 2013; 493: 689–693.

    Article  CAS  Google Scholar 

  10. Ros S, Santos CR, Moco S, Baenke F, Kelly G, Howell M et al. Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov 2012; 2: 328–343.

    Article  CAS  Google Scholar 

  11. Lavin MF, Gueven N . The complexity of p53 stabilization and activation. Cell Death Differ 2006; 13: 941–950.

    Article  CAS  Google Scholar 

  12. Ho J, Benchimol S . Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 2003; 10: 404–408.

    Article  CAS  Google Scholar 

  13. Murphy M, Ahn J, Walker KK, Hoffman WH, Evans RM, Levine AJ et al. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev 1999; 13: 2490–2501.

    Article  CAS  Google Scholar 

  14. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008; 455: 1069–1075.

    Article  CAS  Google Scholar 

  15. Okar DA, Manzano A, Navarro-Sabate A, Riera L, Bartrons R, Lange AJ . PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci 2001; 26: 30–35.

    Article  CAS  Google Scholar 

  16. Strohecker AM, Joshi S, Possemato R, Abraham RT, Sabatini DM, White E . Identification of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as a novel autophagy regulator by high content shRNA screening. Oncogene 2015; 34: 5662–5676.

    Article  CAS  Google Scholar 

  17. Willis A, Jung EJ, Wakefield T, Chen X . Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene 2004; 23: 2330–2338.

    Article  CAS  Google Scholar 

  18. Schwartzenberg-Bar-Yoseph F, Armoni M, Karnieli E . The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res 2004; 64: 2627–2633.

    Article  CAS  Google Scholar 

  19. Bengoechea-Alonso MT, Ericsson J . SREBP in signal transduction: cholesterol metabolism and beyond. Curr Opin Cell Biol 2007; 19: 215–222.

    Article  CAS  Google Scholar 

  20. Freed-Pastor WA, Mizuno H, Zhao X, Langerod A, Moon SH, Rodriguez-Barrueco R et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 2012; 148: 244–258.

    Article  CAS  Google Scholar 

  21. Yahagi N, Shimano H, Matsuzaka T, Najima Y, Sekiya M, Nakagawa Y et al. p53 Activation in adipocytes of obese mice. J Biol Chem 2003; 278: 25395–25400.

    Article  CAS  Google Scholar 

  22. Denko NC . Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 2008; 8: 705–713.

    Article  CAS  Google Scholar 

  23. Mayers JR, Vander Heiden MG . Famine versus feast: understanding the metabolism of tumors in vivo. Trends Biochem Sci 2015; 40: 130–140.

    Article  CAS  Google Scholar 

  24. Casciari JJ, Sotirchos SV, Sutherland RM . Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J Cell Physiol 1992; 151: 386–394.

    Article  CAS  Google Scholar 

  25. Maddocks OD, Vousden KH . Metabolic regulation by p53. J Mol Med 2011; 89: 237–245.

    Article  CAS  Google Scholar 

  26. Kim HR, Roe JS, Lee JE, Cho EJ, Youn HD . p53 regulates glucose metabolism by miR-34a. Biochem Biophys Res Commun 2013; 437: 225–231.

    Article  CAS  Google Scholar 

  27. Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 2013; 493: 542–546.

    Article  CAS  Google Scholar 

  28. Rinn JL, Huarte M . To repress or not to repress: this is the guardian's question. Trends Cell Biol 2011; 21: 344–353.

    Article  CAS  Google Scholar 

  29. Ros S, Schulze A . Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab 2013; 1: 8.

    Article  Google Scholar 

  30. Chesney J, Clark J, Klarer AC, Imbert-Fernandez Y, Lane AN, Telang S . Fructose-2,6-bisphosphate synthesis by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) is required for the glycolytic response to hypoxia and tumor growth. Oncotarget 2014; 5: 6670–6686.

    Article  Google Scholar 

  31. Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S et al. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 2007; 67: 3043–3053.

    Article  CAS  Google Scholar 

  32. Laplante M, Sabatini DM . An emerging role of mTOR in lipid biosynthesis. Curr Biol 2009; 19: R1046–R1052.

    Article  CAS  Google Scholar 

  33. Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA et al. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 2007; 6: 10.

    Article  Google Scholar 

  34. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998; 282: 1497–1501.

    Article  CAS  Google Scholar 

  35. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D . Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871–875.

    Article  CAS  Google Scholar 

  36. Van Schaftingen E, Lederer B, Bartrons R, Hers HG . A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem 1982; 129: 191–195.

    Article  CAS  Google Scholar 

  37. Buescher JM, Moco S, Sauer U, Zamboni N . Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal Chem 2010; 82: 4403–4412.

    Article  CAS  Google Scholar 

  38. Ruhl M, Rupp B, Noh K, Wiechert W, Sauer U, Zamboni N . Collisional fragmentation of central carbon metabolites in LC-MS/MS increases precision of (1)(3)C metabolic flux analysis. Biotechnol Bioeng 2012; 109: 763–771.

    Article  Google Scholar 

  39. Swinnen JV, Heemers H, Deboel L, Foufelle F, Heyns W, Verhoeven G . Stimulation of tumor-associated fatty acid synthase expression by growth factor activation of the sterol regulatory element-binding protein pathway. Oncogene 2000; 19: 5173–5181.

    Article  CAS  Google Scholar 

  40. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

  41. Huang, da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  CAS  Google Scholar 

  42. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D et al. DAVID Bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 2007; 35: W169–W175.

    Article  Google Scholar 

  43. Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J et al. Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 2006; 66: 10292–10301.

    Article  CAS  Google Scholar 

  44. Lee ES, Son DS, Kim SH, Lee J, Jo J, Han J et al. Prediction of recurrence-free survival in postoperative non-small cell lung cancer patients by using an integrated model of clinical information and gene expression. Clin Cancer Res 2008; 14: 7397–7404.

    Article  CAS  Google Scholar 

  45. Goswami CP, Nakshatri H . PROGgene: gene expression based survival analysis web application for multiple cancers. J Clin Bioinform 2013; 3: 22.

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Esnault (LRI) for advice on ChIP and H. Miess for help with Seahorse Analysis, C. Watkins and J. Bee (LRI, BRU) for help with animal experimentation, F. Lassailly, P. Johnson and T. Snoeks (In vivo imaging facility, LRI) for assistance with in vivo imaging and the LRI research services for technical support. We also thank C. Ade and Barbara Bauer (Theodor-Boveri-Institute, Würzburg) for help with RNAseq analysis and histology, Beatrice Dankworth for help with cell line generation and W. Schmitz for insightful discussions. Cancer Research UK, the German Cancer Aid (grant 111917), the German Research Foundation (FOR 2314), and the CRUK-EPSRC Imaging Centre in Cambridge and Manchester (grant 16465) supported this work.

Author contributions

SR and AS conceived the project and wrote the manuscript. SR, JF, IK, CD, AH, SD, BG and SB performed experiments and analysis of results. RM and SW performed the bioinformatic analysis. AB, KMB, NZ and MHR contributed to the study design and data analysis. All authors commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Schulze.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ros, S., Flöter, J., Kaymak, I. et al. 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 is essential for p53-null cancer cells. Oncogene 36, 3287–3299 (2017). https://doi.org/10.1038/onc.2016.477

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.477

This article is cited by

Search

Quick links