Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Syndecan-1 increases B-lymphoid cell extravasation in response to HIV-1 Tat via αvβ3/pp60src/pp125FAK pathway

Abstract

Syndecan-1 is a heparan sulfate proteoglycan (HSPG) commonly upregulated in AIDS-related B lymphoid malignancies. Tat is the main HIV-1 transactivating factor that has a major role in the pathogenesis of AIDS-related lymphomas (ARL) by engaging heparan sulfate proteoglycans (HSPGs), chemokine receptors and integrins at the lymphoid cell (LC) surface. Here B-lymphoid Namalwa cell clones that do not express or overexpress syndecan-1 (EV-Ncs and SYN-Ncs, respectively) were compared for their responsiveness with Tat: in the absence of syndecan-1, Tat induces a limited EV-Nc migration via C-X-C motif chemokine receptor 4 (CXCR4), G-proteins and Rac. Syndecan-1 overexpression increases SYN-Nc responsiveness to Tat and makes this response independent from CXCR4 and G-protein and dependent instead on pp60src phosphorylation. Tat-induced SYN-Nc migration and pp60src phosphorylation require the engagement of αvβ3 integrin and consequent pp125FAK phosphorylation. This complex set of Tat-driven activations is orchestrated by the direct interaction of syndecan-1 with pp60src and its simultaneous coupling with αvβ3. The Tat/syndecan-1/αvβ3 interplay is retained in vivo and is shared also by other syndecan-1+ B-LCs, including BJAB cells, whose responsiveness to Tat is inhibited by syndecan-1 knockdown. In conclusion, overexpression of syndecan-1 confers to B-LCs an increased capacity to migrate in response to Tat, owing to a switch from a CXCR4/G-protein/Rac to a syndecan-1/αvβ3/pp60src/pp125FAK signal transduction pathway that depends on the formation of a complex in which syndecan-1 interacts with Tat via its HS-chains, with αvβ3 via its core protein ectodomain and with pp60src via its intracellular tail. These findings have implications in ARL progression and may help in identifying new therapeutical targets for the treatment of AIDS-associated neoplasia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Yarchoan R, Tosato G, Little RF . Therapy insight: AIDS-related malignancies–the influence of antiviral therapy on pathogenesis and management. Nat Clin Pract Oncol 2005; 2: 406–415, quiz 23.

    Article  CAS  PubMed  Google Scholar 

  2. Rabkin CS . AIDS and cancer in the era of highly active antiretroviral therapy (HAART). Eur J Cancer 2001; 37: 1316–1319.

    Article  CAS  PubMed  Google Scholar 

  3. Martis N, Mounier N . Hodgkin lymphoma in patients with HIV infection: a review. Curr Hematol Malig Rep 2012; 7: 228–234.

    Article  PubMed  Google Scholar 

  4. Shah BK, Subramaniam S, Peace D, Garcia C . HIV-associated primary bone marrow Hodgkin's lymphoma: a distinct entity? J Clin Oncol 2010; 28: e459–e460.

    Article  PubMed  Google Scholar 

  5. Bonnet F, Chene G . Evolving epidemiology of malignancies in HIV. Curr Opin Oncol 2008; 20: 534–540.

    Article  PubMed  Google Scholar 

  6. Gatignol A, Jeang KT . Tat as a transcriptional activator and a potential therapeutic target for HIV-1. Adv Pharmacol 2000; 48: 209–227.

    Article  CAS  PubMed  Google Scholar 

  7. Noonan D, Albini A . From the outside in: extracellular activities of HIV Tat. Adv Pharmacol 2000; 48: 229–250.

    Article  CAS  PubMed  Google Scholar 

  8. Colombrino E, Rossi E, Ballon G, Terrin L, Indraccolo S, Chieco-Bianchi L et al. Human immunodeficiency virus type 1 Tat protein modulates cell cycle and apoptosis in Epstein-Barr virus-immortalized B cells. Exp Cell Res 2004; 295: 539–548.

    Article  CAS  PubMed  Google Scholar 

  9. Chirivi RG, Taraboletti G, Bani MR, Barra L, Piccinini G, Giacca M et al. Human immunodeficiency virus-1 (HIV-1)-Tat protein promotes migration of acquired immunodeficiency syndrome-related lymphoma cells and enhances their adhesion to endothelial cells. Blood 1999; 94: 1747–1754.

    CAS  PubMed  Google Scholar 

  10. Dhawan S, Puri RK, Kumar A, Duplan H, Masson JM, Aggarwal BB . Human immunodeficiency virus-1-tat protein induces the cell surface expression of endothelial leukocyte adhesion molecule-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in human endothelial cells. Blood 1997; 90: 1535–1544.

    CAS  PubMed  Google Scholar 

  11. Lafrenie RM, Wahl LM, Epstein JS, Hewlett IK, Yamada KM, Dhawan S . HIV-1-Tat modulates the function of monocytes and alters their interactions with microvessel endothelial cells. A mechanism of HIV pathogenesis. J Immunol 1996; 156: 1638–1645.

    CAS  PubMed  Google Scholar 

  12. Toborek M, Lee YW, Pu H, Malecki A, Flora G, Garrido R et al. HIV-Tat protein induces oxidative and inflammatory pathways in brain endothelium. J Neurochem 2003; 84: 169–179.

    Article  CAS  PubMed  Google Scholar 

  13. Huang L, Li CJ, Pardee AB . Human immunodeficiency virus type 1 TAT protein activates B lymphocytes. Biochem Biophys Res Commun 1997; 237: 461–464.

    Article  CAS  PubMed  Google Scholar 

  14. Arese M, Ferrandi C, Primo L, Camussi G, Bussolino F . HIV-1 Tat protein stimulates in vivo vascular permeability and lymphomononuclear cell recruitment. J Immunol 2001; 166: 1380–1388.

    Article  CAS  PubMed  Google Scholar 

  15. Toschi E, Barillari G, Sgadari C, Bacigalupo I, Cereseto A, Carlei D et al. Activation of matrix-metalloproteinase-2 and membrane-type-1-matrix-metalloproteinase in endothelial cells and induction of vascular permeability in vivo by human immunodeficiency virus-1 Tat protein and basic fibroblast growth factor. Mol Biol Cell 2001; 12: 2934–2946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kundu RK, Sangiorgi F, Wu LY, Pattengale PK, Hinton DR, Gill PS et al. Expression of the human immunodeficiency virus-Tat gene in lymphoid tissues of transgenic mice is associated with B-cell lymphoma. Blood 1999; 94: 275–282.

    CAS  PubMed  Google Scholar 

  17. Pals ST, de Gorter DJ, Spaargaren M . Lymphoma dissemination: the other face of lymphocyte homing. Blood 2007; 110: 3102–3111.

    Article  CAS  PubMed  Google Scholar 

  18. Levine AM . Acquired immunodeficiency syndrome-related lymphoma. Blood 1992; 80: 8–20.

    CAS  PubMed  Google Scholar 

  19. Ghezzi S, Noonan DM, Aluigi MG, Vallanti G, Cota M, Benelli R et al. Inhibition of CXCR4-dependent HIV-1 infection by extracellular HIV-1 Tat. Biochem Biophys Res Commun 2000; 270: 992–996.

    Article  CAS  PubMed  Google Scholar 

  20. Urbinati C, Bugatti A, Giacca M, Schlaepfer D, Presta M, Rusnati M . alpha(v)beta3-integrin-dependent activation of focal adhesion kinase mediates NF-kappaB activation and motogenic activity by HIV-1 Tat in endothelial cells. J Cell Sci 2005; 118 (Pt 17): 3949–3958.

    Article  CAS  PubMed  Google Scholar 

  21. Mitola S, Sozzani S, Luini W, Primo L, Borsatti A, Weich H et al. Tat-human immunodeficiency virus-1 induces human monocyte chemotaxis by activation of vascular endothelial growth factor receptor-1. Blood 1997; 90: 1365–1372.

    CAS  PubMed  Google Scholar 

  22. Urbinati C, Nicoli S, Giacca M, David G, Fiorentini S, Caruso A et al. HIV-1 Tat and heparan sulfate proteoglycan interaction: a novel mechanism of lymphocyte adhesion and migration across the endothelium. Blood 2009; 114: 3335–3342.

    Article  CAS  PubMed  Google Scholar 

  23. Hoffmann C, Tiemann M, Schrader C, Janssen D, Wolf E, Vierbuchen M et al. AIDS-related B-cell lymphoma (ARL): correlation of prognosis with differentiation profiles assessed by immunophenotyping. Blood 2005; 106: 1762–1769.

    Article  CAS  PubMed  Google Scholar 

  24. Carbone A, Gloghini A, Gaidano G . Expression of BCL-6 protein and CD138/syndecan-1 as B-cell markers in Hodgkin's disease. Int J Biol Markers 1999; 14: 144–148.

    Article  CAS  PubMed  Google Scholar 

  25. Saphire AC, Bobardt MD, Zhang Z, David G, Gallay PA . Syndecans serve as attachment receptors for human immunodeficiency virus type 1 on macrophages. J Virol 2001; 75: 9187–9200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sanderson RD, Borset M . Syndecan-1 in B lymphoid malignancies. Ann Hematol 2002; 81: 125–135.

    Article  CAS  PubMed  Google Scholar 

  27. Kaneider NC, Reinisch CM, Dunzendorfer S, Romisch J, Wiedermann CJ, Wiederman CJ . Syndecan-4 mediates antithrombin-induced chemotaxis of human peripheral blood lymphocytes and monocytes. J Cell Sci 2002; 115 (Pt 1): 227–236.

    CAS  PubMed  Google Scholar 

  28. Hamon M, Mbemba E, Charnaux N, Slimani H, Brule S, Saffar L et al. A syndecan-4/CXCR4 complex expressed on human primary lymphocytes and macrophages and HeLa cell line binds the CXC chemokine stromal cell-derived factor-1 (SDF-1). Glycobiology 2004; 14: 311–323.

    Article  CAS  PubMed  Google Scholar 

  29. Whiteford JR, Behrends V, Kirby H, Kusche-Gullberg M, Muramatsu T, Couchman JR . Syndecans promote integrin-mediated adhesion of mesenchymal cells in two distinct pathways. Exp Cell Res 2007; 313: 3902–3913.

    Article  CAS  PubMed  Google Scholar 

  30. Lamorte S, Ferrero S, Aschero S, Monitillo L, Bussolati B, Omede P et al. Syndecan-1 promotes the angiogenic phenotype of multiple myeloma endothelial cells. Leukemia 2012; 26: 1081–1090.

    Article  CAS  PubMed  Google Scholar 

  31. Reijmers RM, Spaargaren M, Pals ST . Heparan sulfate proteoglycans in the control of B cell development and the pathogenesis of multiple myeloma. FEBS J 2013; 280: 2180–2193.

    Article  CAS  PubMed  Google Scholar 

  32. Lindahl U, Lidholt K, Spillmann D, Kjellen L . More to ‘heparin’ than anticoagulation. Thromb Res 1994; 75: 1–32.

    Article  CAS  PubMed  Google Scholar 

  33. Dhodapkar MV, Sanderson RD . Syndecan-1 (CD 138) in myeloma and lymphoid malignancies: a multifunctional regulator of cell behavior within the tumor microenvironment. Leuk Lymphoma 1999; 34: 35–43.

    Article  CAS  PubMed  Google Scholar 

  34. Lebakken CS, McQuade KJ, Rapraeger AC . Syndecan-1 signals independently of beta1 integrins during Raji cell spreading. Exp Cell Res 2000; 259: 315–325.

    Article  CAS  PubMed  Google Scholar 

  35. Yang Y, Yaccoby S, Liu W, Langford JK, Pumphrey CY, Theus A et al. Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood 2002; 100: 610–617.

    Article  CAS  PubMed  Google Scholar 

  36. Ingold K, Zumsteg A, Tardivel A, Huard B, Steiner QG, Cachero TG et al. Identification of proteoglycans as the APRIL-specific binding partners. J Exp Med 2005; 201: 1375–1383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rapraeger AC . Synstatin: a selective inhibitor of the syndecan-1-coupled IGF1R-alphavbeta3 integrin complex in tumorigenesis and angiogenesis. FEBS J 2013; 280: 2207–2215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Z, Coomans C, David G . Membrane heparan sulfate proteoglycan-supported FGF2-FGFR1 signaling: evidence in support of the ‘cooperative end structures’ model. J Biol Chem 2001; 276: 41921–41929.

    Article  CAS  PubMed  Google Scholar 

  39. Mosheimer BA, Kaneider NC, Feistritzer C, Djanani AM, Sturn DH, Patsch JR et al. Syndecan-1 is involved in osteoprotegerin-induced chemotaxis in human peripheral blood monocytes. J Clin Endocrinol Metab 2005; 90: 2964–2971.

    Article  CAS  PubMed  Google Scholar 

  40. Montecucco F, Bianchi G, Gnerre P, Bertolotto M, Dallegri F, Ottonello L . Induction of neutrophil chemotaxis by leptin: crucial role for p38 and Src kinases. Ann NY Acad Sci 2006; 1069: 463–471.

    Article  CAS  PubMed  Google Scholar 

  41. Okabe S, Fukuda S, Broxmeyer HE . Src kinase, but not the src kinase family member p56lck, mediates stromal cell-derived factor 1alpha/CXCL12-induced chemotaxis of a T cell line. J Hematother Stem Cell Res 2002; 11: 923–928.

    Article  CAS  PubMed  Google Scholar 

  42. Calpe E, Purroy N, Carpio C, Abrisqueta P, Carabia J, Palacio C et al. ZAP-70 promotes the infiltration of malignant B-lymphocytes into the bone marrow by enhancing signaling and migration after CXCR4 stimulation. PLoS One 2013; 8: e81221.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu WS, Heckman CA . The sevenfold way of PKC regulation. Cell Signal 1998; 10: 529–542.

    Article  CAS  PubMed  Google Scholar 

  44. Safaiyan F, Kolset SO, Prydz K, Gottfridsson E, Lindahl U, Salmivirta M . Selective effects of sodium chlorate treatment on the sulfation of heparan sulfate. J Biol Chem 1999; 274: 36267–36273.

    Article  CAS  PubMed  Google Scholar 

  45. Brule S, Friand V, Sutton A, Baleux F, Gattegno L, Charnaux N . Glycosaminoglycans and syndecan-4 are involved in SDF-1/CXCL12-mediated invasion of human epitheloid carcinoma HeLa cells. Biochim Biophys Acta 2009; 1790: 1643–1650.

    Article  CAS  PubMed  Google Scholar 

  46. Hatse S, Princen K, Bridger G, De Clercq E, Schols D . Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett 2002; 527: 255–262.

    Article  CAS  PubMed  Google Scholar 

  47. Vacca A, Ria R, Presta M, Ribatti D, Iurlaro M, Merchionne F et al. alpha(v)beta(3) integrin engagement modulates cell adhesion, proliferation, and protease secretion in human lymphoid tumor cells. Exp Hematol 2001; 29: 993–1003.

    Article  CAS  PubMed  Google Scholar 

  48. Salcedo R, Patarroyo M . Constitutive alpha V beta 3 integrin-mediated adhesion of human lymphoid B cells to vitronectin substrate. Cell Immunol 1995; 160: 165–172.

    Article  CAS  PubMed  Google Scholar 

  49. Urbinati C, Mitola S, Tanghetti E, Kumar C, Waltenberger J, Ribatti D et al. Integrin alphavbeta3 as a target for blocking HIV-1 Tat-induced endothelial cell activation in vitro and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 2005; 25: 2315–2320.

    Article  CAS  PubMed  Google Scholar 

  50. Ott VL, Rapraeger AC . Tyrosine phosphorylation of syndecan-1 and -4 cytoplasmic domains in adherent B82 fibroblasts. J Biol Chem 1998; 273: 35291–35298.

    Article  CAS  PubMed  Google Scholar 

  51. Choi Y, Kim H, Chung H, Hwang JS, Shin JA, Han IO et al. Syndecan-2 regulates cell migration in colon cancer cells through Tiam1-mediated Rac activation. Biochem Biophys Res Commun 2010; 391: 921–925.

    Article  CAS  PubMed  Google Scholar 

  52. Volinsky N, Gantman A, Yablonski D . A Pak- and Pix-dependent branch of the SDF-1alpha signalling pathway mediates T cell chemotaxis across restrictive barriers. Biochem J 2006; 397: 213–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arai A, Jin A, Yan W, Mizuchi D, Yamamoto K, Nanki T et al. SDF-1 synergistically enhances IL-3-induced activation of the Raf-1/MEK/Erk signaling pathway through activation of Rac and its effector Pak kinases to promote hematopoiesis and chemotaxis. Cell Signal 2005; 17: 497–506.

    Article  CAS  PubMed  Google Scholar 

  54. Arai A, Aoki M, Weihua Y, Jin A, Miura O . CrkL plays a role in SDF-1-induced activation of the Raf-1/MEK/Erk pathway through Ras and Rac to mediate chemotactic signaling in hematopoietic cells. Cell Signal 2006; 18: 2162–2171.

    Article  CAS  PubMed  Google Scholar 

  55. Feistritzer C, Mosheimer BA, Tancevski I, Kaneider NC, Sturn DH, Patsch JR et al. Src tyrosine kinase-dependent migratory effects of antithrombin in leukocytes. Exp Cell Res 2005; 305: 214–220.

    Article  CAS  PubMed  Google Scholar 

  56. Wang H, Leavitt L, Ramaswamy R, Rapraeger AC . Interaction of syndecan and alpha6beta4 integrin cytoplasmic domains: regulation of ErbB2-mediated integrin activation. J Biol Chem 2010; 285: 13569–13579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beauvais DM, Burbach BJ, Rapraeger AC . The syndecan-1 ectodomain regulates alphavbeta3 integrin activity in human mammary carcinoma cells. J Cell Biol 2004; 167: 171–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jarousse N, Chandran B, Coscoy L . Lack of heparan sulfate expression in B-cell lines: implications for Kaposi's sarcoma-associated herpesvirus and murine gammaherpesvirus 68 infections. J Virol 2008; 82: 12591–12597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Akula SM, Wang FZ, Vieira J, Chandran B . Human herpesvirus 8 interaction with target cells involves heparan sulfate. Virology 2001; 282: 245–255.

    Article  CAS  PubMed  Google Scholar 

  60. Mennerich D, Vogel A, Klaman I, Dahl E, Lichtner RB, Rosenthal A et al. Shift of syndecan-1 expression from epithelial to stromal cells during progression of solid tumours. Eur J Cancer 2004; 40: 1373–1382.

    Article  CAS  PubMed  Google Scholar 

  61. Lebakken CS, Rapraeger AC . Syndecan-1 mediates cell spreading in transfected human lymphoblastoid (Raji) cells. J Cell Biol 1996; 132: 1209–1221.

    Article  CAS  PubMed  Google Scholar 

  62. Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK . A transgenic zebrafish model of neutrophilic inflammation. Blood 2006; 108: 3976–3978.

    Article  CAS  PubMed  Google Scholar 

  63. Murphy JW, Cho Y, Sachpatzidis A, Fan C, Hodsdon ME, Lolis E . Structural and functional basis of CXCL12 (stromal cell-derived factor-1 alpha) binding to heparin. J Biol Chem 2007; 282: 10018–10027.

    Article  CAS  PubMed  Google Scholar 

  64. van der Voort R, Keehnen RM, Beuling EA, Spaargaren M, Pals ST . Regulation of cytokine signaling by B cell antigen receptor and CD40-controlled expression of heparan sulfate proteoglycans. J Exp Med 2000; 192: 1115–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kinnunen T, Kaksonen M, Saarinen J, Kalkkinen N, Peng HB, Rauvala H . Cortactin-Src kinase signaling pathway is involved in N-syndecan-dependent neurite outgrowth. J Biol Chem 1998; 273: 10702–10708.

    Article  CAS  PubMed  Google Scholar 

  66. Rusnati M, Tulipano G, Spillmann D, Tanghetti E, Oreste P, Zoppetti G et al. Multiple interactions of HIV-I Tat protein with size-defined heparin oligosaccharides. J Biol Chem 1999; 274: 28198–28205.

    Article  CAS  PubMed  Google Scholar 

  67. Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT . Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol 1994; 14: 1680–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mitra SK, Schlaepfer DD . Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 2006; 18: 516–523.

    Article  CAS  PubMed  Google Scholar 

  69. Jarousse N, Trujillo DL, Wilcox-Adelman S, Coscoy L . Virally-induced upregulation of heparan sulfate on B cells via the action of type I IFN. J Immunol 2011; 187: 5540–5547.

    Article  CAS  PubMed  Google Scholar 

  70. Fadnes B, Husebekk A, Svineng G, Rekdal O, Yanagishita M, Kolset SO et al. The proteoglycan repertoire of lymphoid cells. Glycoconj J 2012; 29: 513–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cross LM, Cook MA, Lin S, Chen JN, Rubinstein AL . Rapid analysis of angiogenesis drugs in a live fluorescent zebrafish assay. Arterioscler Thromb Vasc Biol 2003; 23: 911–912.

    Article  CAS  PubMed  Google Scholar 

  72. Westerfield M . The Zebrafish Book. University of Pregon Press: Eugene, OR, USA, 1995.

    Google Scholar 

Download references

Acknowledgements

We thank Professor Marco Presta (University of Brescia) for helpful discussion. This work was supported by grants from MIUR to MR. PC was supported by Fondazione Italiana per la Ricerca sul Cancro Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Rusnati.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urbinati, C., Grillo, E., Chiodelli, P. et al. Syndecan-1 increases B-lymphoid cell extravasation in response to HIV-1 Tat via αvβ3/pp60src/pp125FAK pathway. Oncogene 36, 2609–2618 (2017). https://doi.org/10.1038/onc.2016.420

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.420

Search

Quick links