Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of DAB2IP in RCC cells enhances their growth and resistance to mTOR-targeted therapies

Abstract

Targeted therapies using small-molecule inhibitors (SMIs) are commonly used in metastatic renal cell cancer (mRCC) patients; patients often develop drug resistance and eventually succumb to disease. Currently, understanding of mechanisms leading to SMIs resistance and any identifiable predictive marker(s) are still lacking. We discovered that DAB2IP, a novel Ras-GTPase-activating protein, was frequently epigenetically silenced in RCC, and DAB2IP loss was correlated with the overall survival of RCC patients. Loss of DAB2IP in RCC cells enhances their sensitivities to growth factor stimulation and resistances to SMI (such as mammalian target of rapamycin (mTOR) inhibitors). Mechanistically, loss of DAB2IP results in the activation of extracellular signal–regulated kinase/RSK1 and phosphoinositide-3 kinase/mTOR pathway, which synergizes the induction of hypoxia-inducible factor (HIF)-2α expression. Consequently, elevated HIF-2α suppresses p21/WAF1 expression that is associated with resistance to mTOR inhibitors. Thus combinatorial targeting both pathways resulted in a synergistic tumor inhibition. DAB2IP appears to be a new prognostic/predictive marker for mRCC patients, and its function provides a new insight into the molecular mechanisms of drug resistance to mTOR inhibitors, which also can be used to develop new strategies to overcome drug-resistant mRCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cohen HT, McGovern FJ . Renal-cell carcinoma. N Engl J Med 2005; 353: 2477–2490.

    Article  CAS  PubMed  Google Scholar 

  2. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013; 499: 43–49.

    Article  Google Scholar 

  3. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010; 463: 360–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kucejova B, Pena-Llopis S, Yamasaki T, Sivanand S, Tran TA, Alexander S et al. Interplay between pVHL and mTORC1 pathways in clear-cell renal cell carcinoma. Mol Cancer Res 2011; 9: 1255–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A, Leng N, Pavia-Jimenez A, Wang S et al. BAP1 loss defines a new class of renal cell carcinoma. Nat Genet 2012; 44: 751–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet 2013; 45: 860–867.

    Article  CAS  PubMed  Google Scholar 

  7. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 2011; 469: 539–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kroeger N, Choueiri TK, Lee JL, Bjarnason GA, Knox JJ, Mackenzie MJ et al. Survival outcome and treatment response of patients with late relapse from renal cell carcinoma in the era of targeted therapy. Eur Urol 2014; 65: 1086–1092.

    Article  PubMed  Google Scholar 

  9. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 2007; 356: 115–124.

    Article  CAS  PubMed  Google Scholar 

  10. Atkins MB, Hidalgo M, Stadler WM, Logan TF, Dutcher JP, Hudes GR et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 2004; 22: 909–918.

    Article  CAS  PubMed  Google Scholar 

  11. Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 2007; 370: 2103–2111.

    Article  PubMed  Google Scholar 

  12. Rini BI, Atkins MB . Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol 2009; 10: 992–1000.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang H, Zhang R, Luo Y, D'Alessio A, Pober JS, Min W . AIP1/DAB2IP, a novel member of the Ras-GAP family, transduces TRAF2-induced ASK1-JNK activation. J Biol Chem 2004; 279: 44955–44965.

    Article  CAS  PubMed  Google Scholar 

  14. Min J, Zaslavsky A, Fedele G, McLaughlin SK, Reczek EE, De Raedt T et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nat Med 2010; 16: 286–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu K, Xie D, Zou Y, Zhang T, Pong RC, Xiao G et al. The mechanism of DAB2IP in chemoresistance of prostate cancer cells. Clin Cancer Res 2013; 19: 4740–4749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xie D, Gore C, Zhou J, Pong RC, Zhang H, Yu L et al. DAB2IP coordinates both PI3K-Akt and ASK1 pathways for cell survival and apoptosis. Proc Natl Acad Sci USA 2009; 106: 19878–19883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Calvisi DF, Ladu S, Conner EA, Seo D, Hsieh JT, Factor VM et al. Inactivation of Ras GTPase-activating proteins promotes unrestrained activity of wild-type Ras in human liver cancer. J Hepatol 2011; 54: 311–319.

    Article  CAS  PubMed  Google Scholar 

  18. Chen H, Pong RC, Wang Z, Hsieh JT . Differential regulation of the human gene DAB2IP in normal and malignant prostatic epithelia: cloning and characterization. Genomics 2002; 79: 573–581.

    Article  CAS  PubMed  Google Scholar 

  19. Chen H, Toyooka S, Gazdar AF, Hsieh JT . Epigenetic regulation of a novel tumor suppressor gene (hDAB2IP) in prostate cancer cell lines. J Biol Chem 2003; 278: 3121–3130.

    Article  CAS  PubMed  Google Scholar 

  20. Qiu GH, Xie H, Wheelhouse N, Harrison D, Chen GG, Salto-Tellez M et al. Differential expression of hDAB2IPA and hDAB2IPB in normal tissues and promoter methylation of hDAB2IPA in hepatocellular carcinoma. J Hepatol 2007; 46: 655–663.

    Article  CAS  PubMed  Google Scholar 

  21. Ryan MJ, Johnson G, Kirk J, Fuerstenberg SM, Zager RA, Torok-Storb B . HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int 1994; 45: 48–57.

    Article  CAS  PubMed  Google Scholar 

  22. Omeir RL, Teferedegne B, Foseh GS, Beren JJ, Snoy PJ, Brinster LR et al. Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells. Comp Med 2011; 61: 243–250.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Niculescu AB 3rd, Chen X, Smeets M, Hengst L, Prives C, Reed SI . Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 1998; 18: 629–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC . HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 2007; 11: 335–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shinojima T, Oya M, Takayanagi A, Mizuno R, Shimizu N, Murai M . Renal cancer cells lacking hypoxia inducible factor (HIF)-1alpha expression maintain vascular endothelial growth factor expression through HIF-2alpha. Carcinogenesis 2007; 28: 529–536.

    Article  CAS  PubMed  Google Scholar 

  26. Laptenko O, Beckerman R, Freulich E, Prives C . p53 binding to nucleosomes within the p21 promoter in vivo leads to nucleosome loss and transcriptional activation. Proc Natl Acad Sci USA 2011; 108: 10385–10390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Di Lorenzo G, Autorino R, Sternberg CN . Metastatic renal cell carcinoma: recent advances in the targeted therapy era. Eur Urol 2009; 56: 959–971.

    Article  CAS  PubMed  Google Scholar 

  28. Shahbazian D, Roux PP, Mieulet V, Cohen MS, Raught B, Taunton J et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J 2006; 25: 2781–2791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008; 118: 3065–3074.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Serra V, Scaltriti M, Prudkin L, Eichhorn PJ, Ibrahim YH, Chandarlapaty S et al. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene 2011; 30: 2547–2557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Serra V, Eichhorn PJ, Garcia-Garcia C, Ibrahim YH, Prudkin L, Sanchez G et al. RSK3/4 mediate resistance to PI3K pathway inhibitors in breast cancer. J Clin Invest 2013; 123: 2551–2563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Das F, Ghosh-Choudhury N, Kasinath BS, Choudhury GG . TGFbeta enforces activation of eukaryotic elongation factor-2 (eEF2) via inactivation of eEF2 kinase by p90 ribosomal S6 kinase (p90Rsk) to induce mesangial cell hypertrophy. FEBS Lett 2010; 584: 4268–4272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 2007; 282: 14056–14064.

    Article  CAS  PubMed  Google Scholar 

  34. Martinelli E, Troiani T, D'Aiuto E, Morgillo F, Vitagliano D, Capasso A et al. Antitumor activity of pimasertib, a selective MEK 1/2 inhibitor, in combination with PI3K/mTOR inhibitors or with multi-targeted kinase inhibitors in pimasertib-resistant human lung and colorectal cancer cells. Int J Cancer 2013; 133: 2089–2101.

    CAS  PubMed  Google Scholar 

  35. Duggan D, Zheng SL, Knowlton M, Benitez D, Dimitrov L, Wiklund F et al. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst 2007; 99: 1836–1844.

    Article  CAS  PubMed  Google Scholar 

  36. Dote H, Toyooka S, Tsukuda K, Yano M, Ouchida M, Doihara H et al. Aberrant promoter methylation in human DAB2 interactive protein (hDAB2IP) gene in breast cancer. Clin Cancer Res 2004; 10: 2082–2089.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang X, Li N, Li X, Zhao W, Qiao Y, Liang L et al. Low expression of DAB2IP contributes to malignant development and poor prognosis in hepatocellular carcinoma. J Gastroenterol Hepatol 2012; 27: 1117–1125.

    Article  CAS  PubMed  Google Scholar 

  38. Yano M, Toyooka S, Tsukuda K, Dote H, Ouchida M, Hanabata T et al. Aberrant promoter methylation of human DAB2 interactive protein (hDAB2IP) gene in lung cancers. Int J Cancer 2005; 113: 59–66.

    Article  CAS  PubMed  Google Scholar 

  39. Chen H, Tu SW, Hsieh JT . Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J Biol Chem 2005; 280: 22437–22444.

    Article  CAS  PubMed  Google Scholar 

  40. Smits M, van Rijn S, Hulleman E, Biesmans D, van Vuurden DG, Kool M et al. EZH2-regulated DAB2IP is a medulloblastoma tumor suppressor and a positive marker for survival. Clin Cancer Res 2012; 18: 4048–4058.

    Article  CAS  PubMed  Google Scholar 

  41. Wang Z, Tseng CP, Pong RC, Chen H, McConnell JD, Navone N et al. The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate cancer. Characterization of a novel GTPase-activating protein associated with N-terminal domain of DOC-2/DAB2. J Biol Chem 2002; 277: 12622–12631.

    Article  CAS  PubMed  Google Scholar 

  42. Onda H, Lueck A, Marks PW, Warren HB, Kwiatkowski DJ . Tsc2(+/-) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J Clin Invest 1999; 104: 687–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abukhdeir AM, Vitolo MI, Argani P, De Marzo AM, Karakas B, Konishi H et al. Tamoxifen-stimulated growth of breast cancer due to p21 loss. Proc Natl Acad Sci USA 2008; 105: 288–293.

    Article  CAS  PubMed  Google Scholar 

  44. Cariou S, Donovan JC, Flanagan WM, Milic A, Bhattacharya N, Slingerland JM . Down-regulation of p21WAF1/CIP1 or p27Kip1 abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells. Proc Natl Acad Sci USA 2000; 97: 9042–9046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang D, Ding Y, Zhou M, Rini BI, Petillo D, Qian CN et al. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res 2010; 70: 1063–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Julien LA, Carriere A, Moreau J, Roux PP . mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 2010; 30: 908–921.

    Article  CAS  PubMed  Google Scholar 

  47. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009; 37: D141–D145.

    Article  CAS  PubMed  Google Scholar 

  48. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  PubMed  Google Scholar 

  49. Camp RL, Dolled-Filhart M, Rimm DL . X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 2004; 10: 7252–7259.

    Article  CAS  PubMed  Google Scholar 

  50. Chou TC . Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010; 70: 440–446.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank John Santoyo for editorial assistance. This work was supported in part by Jean H and John T Walter, Jr, Endowment for Research in Urologic Oncology (to J-TH), the National Natural Science Foundation of China (NSFC 81202014 to KW) and the Fundamental Research Funds for the Central Universities in China (to KW).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D He or J-T Hsieh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Luo, J., Wu, K. et al. Loss of DAB2IP in RCC cells enhances their growth and resistance to mTOR-targeted therapies. Oncogene 35, 4663–4674 (2016). https://doi.org/10.1038/onc.2016.4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.4

This article is cited by

Search

Quick links