Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TBX2 represses PTEN in rhabdomyosarcoma and skeletal muscle

Abstract

Rhabdomyosarcoma (RMS) is the most frequent soft tissue sarcoma in children that shares many features of developing skeletal muscle. TBX2, a T-box family member, is highly upregulated in tumor cells of both major RMS subtypes where it functions as an oncogene. TBX2 is a repressor that is often overexpressed in cancer cells and functions in bypassing cell growth control, including the repression of the cell cycle regulators p14 and p21. We have found that TBX2 directly represses the tumor-suppressor phosphatase and tensin homolog (PTEN) in both RMS and normal muscle. Exogenous expression of TBX2 in normal muscle cells downregulates PTEN, and depletion or interference with TBX2 in RMS cells upregulates PTEN. Human RMS tumors show high levels of TBX2 and correspondingly low levels of PTEN. The expression of PTEN in clinical RMS samples is relatively uncharacterized, and we establish that suppression of PTEN is a frequent event in both subtypes of RMS. TBX2 represses PTEN by directly binding to the promoter and recruiting the histone deacetylase, HDAC1. RMS cells have high levels of activated AKT owing to the deregulation of phosphoinositide-3 kinase (PI3K) signaling, and depletion or interference with TBX2, which upregulates PTEN, results in a reduction of phospho-AKT. We have also found that the highly related T-box family member TBX3 does not repress PTEN in the muscle lineage. This work suggests that TBX2 is a central component of the PTEN/PI3K/AKT signaling pathway deregulation in RMS cells and that targeting TBX2 in RMS tumors may offer a novel therapeutic approach for RMS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Chalhoub N, Baker SJ . PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 2009; 4: 127–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP . Pten is essential for embryonic development and tumour suppression. Nat Genet 1998; 19: 348–355.

    Article  CAS  PubMed  Google Scholar 

  3. Castellino RC, Barwick BG, Schniederjan M, Buss MC, Becher O, Hambardzumyan D et al. Heterozygosity for Pten promotes tumorigenesis in a mouse model of medulloblastoma. PLoS One 2010; 5: e10849.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shao J, Washington MK, Saxena R, Sheng H . Heterozygous disruption of the PTEN promotes intestinal neoplasia in APCmin/+ mouse: roles of osteopontin. Carcinogenesis 2007; 28: 2476–2483.

    Article  CAS  PubMed  Google Scholar 

  5. Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP . Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet 2001; 27: 222–224.

    Article  CAS  PubMed  Google Scholar 

  6. Leevers SJ, Vanhaesebroeck B, Waterfield MD . Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr Opin Cell Biol 1999; 11: 219–225.

    Article  CAS  PubMed  Google Scholar 

  7. Chung JH, Eng C . Nuclear-cytoplasmic partitioning of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) differentially regulates the cell cycle and apoptosis. Cancer Res 2005; 65: 8096–8100.

    Article  CAS  PubMed  Google Scholar 

  8. Li DM, Sun H . PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci USA 1998; 95: 15406–15411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weng LP, Brown JL, Baker KM, Ostrowski MC, Eng C . PTEN blocks insulin-mediated ETS-2 phosphorylation through MAP kinase, independently of the phosphoinositide 3-kinase pathway. Hum Mol Genet 2002; 11: 1687–1696.

    Article  CAS  PubMed  Google Scholar 

  10. Weng LP, Brown JL, Eng C . PTEN coordinates G(1) arrest by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. Hum Mol Genet 2001; 10: 599–604.

    Article  CAS  PubMed  Google Scholar 

  11. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP et al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 2007; 128: 157–170.

    Article  CAS  PubMed  Google Scholar 

  12. Maehama T, Dixon JE . The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273: 13375–13378.

    Article  CAS  PubMed  Google Scholar 

  13. Mandl A, Sarkes D, Carricaburu V, Jung V, Rameh L . Serum withdrawal-induced accumulation of phosphoinositide 3-kinase lipids in differentiating 3T3-L6 myoblasts: distinct roles for Ship2 and PTEN. Mol Cell Biol 2007; 27: 8098–8112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wijesekara N, Konrad D, Eweida M, Jefferies C, Liadis N, Giacca A et al. Muscle-specific Pten deletion protects against insulin resistance and diabetes. Mol Cell Biol 2005; 25: 1135–1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Radu A, Neubauer V, Akagi T, Hanafusa H, Georgescu MM . PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol Cell Biol 2003; 23: 6139–6149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang W, Chang HY, Fei T, Wu H, Chen YG . GSK3 beta mediates suppression of cyclin D2 expression by tumor suppressor PTEN. Oncogene 2007; 26: 2471–2482.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu X, Kwon CH, Schlosshauer PW, Ellenson LH, Baker SJ . PTEN induces G(1) cell cycle arrest and decreases cyclin D3 levels in endometrial carcinoma cells. Cancer Res 2001; 61: 4569–4575.

    CAS  PubMed  Google Scholar 

  18. Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA 1999; 96: 6199–6204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shern JF, Chen L, Chmielecki J, Wei JS, Patidar R, Rosenberg M et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov 2014; 4: 216–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li HG, Wang Q, Li HM, Kumar S, Parker C, Slevin M et al. PAX3 and PAX3-FKHR promote rhabdomyosarcoma cell survival through downregulation of PTEN. Cancer Lett 2007; 253: 215–223.

    Article  CAS  PubMed  Google Scholar 

  21. Wan X, Helman LJ . Levels of PTEN protein modulate Akt phosphorylation on serine 473, but not on threonine 308, in IGF-II-overexpressing rhabdomyosarcomas cells. Oncogene 2003; 22: 8205–8211.

    Article  CAS  PubMed  Google Scholar 

  22. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307: 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  23. Toker A, Newton AC . Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J Biol Chem 2000; 275: 8271–8274.

    Article  CAS  PubMed  Google Scholar 

  24. Sarver AL, Li L, Subramanian S . MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res 2010; 70: 9570–9580.

    Article  CAS  PubMed  Google Scholar 

  25. Ross AH, Gericke A . Phosphorylation keeps PTEN phosphatase closed for business. Proc Natl Acad Sci USA 2009; 106: 1297–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu B, Zhang M, Byrum SD, Tackett AJ, Davie JK . TBX2 blocks myogenesis and promotes proliferation in rhabdomyosarcoma cells. Int J Cancer 2014; 135: 785–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davis RL, Weintraub H, Lassar AB . Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 1987; 51: 987–1000.

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Ballim D, Rodriguez M, Cui R, Goding CR, Teng H et al. The anti-proliferative function of the TGF-beta1 signaling pathway involves the repression of the oncogenic TBX2 by its homologue TBX3. J Biol Chem 2014; 289: 35633–35643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vance KW, Carreira S, Brosch G, Goding CR . Tbx2 is overexpressed and plays an important role in maintaining proliferation and suppression of senescence in melanomas. Cancer Res 2005; 65: 2260–2268.

    Article  CAS  PubMed  Google Scholar 

  30. Douglas NC, Papaioannou VE . The T-box transcription factors TBX2 and TBX3 in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 2013; 18: 143–147.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Peres J, Prince S . The T-box transcription factor, TBX3, is sufficient to promote melanoma formation and invasion. Mol Cancer 2013; 12: 117.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Carlson H, Ota S, Song Y, Chen Y, Hurlin PJ . Tbx3 impinges on the p53 pathway to suppress apoptosis, facilitate cell transformation and block myogenic differentiation. Oncogene 2002; 21: 3827–3835.

    Article  CAS  PubMed  Google Scholar 

  33. Burgucu D, Guney K, Sahinturk D, Ozbudak IH, Ozel D, Ozbilim G et al. Tbx3 represses PTEN and is over-expressed in head and neck squamous cell carcinoma. BMC Cancer 2012; 12: 481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Renshaw J, Taylor KR, Bishop R, Valenti M, De Haven Brandon A, Gowan S et al. Dual blockade of the PI3K/AKT/mTOR (AZD8055) and RAS/MEK/ERK (AZD6244) pathways synergistically inhibits rhabdomyosarcoma cell growth in vitro and in vivo. Clin Cancer Res 2013; 19: 5940–5951.

    Article  CAS  PubMed  Google Scholar 

  35. Ciccarelli C, Marampon F, Scoglio A, Mauro A, Giacinti C, De Cesaris P et al. p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells. Mol Cancer 2005; 4: 41.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jacobs JJ, Keblusek P, Robanus-Maandag E, Kristel P, Lingbeek M, Nederlof PM et al. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat Genet 2000; 26: 291–299.

    Article  CAS  PubMed  Google Scholar 

  37. Jonsson G, Dahl C, Staaf J, Sandberg T, Bendahl PO, Ringner M et al. Genomic profiling of malignant melanoma using tiling-resolution arrayCGH. Oncogene 2007; 26: 4738–4748.

    Article  CAS  PubMed  Google Scholar 

  38. Lomnytska M, Dubrovska A, Hellman U, Volodko N, Souchelnytskyi S . Increased expression of cSHMT, Tbx3 and utrophin in plasma of ovarian and breast cancer patients. Int J Cancer 2006; 118: 412–421.

    Article  CAS  PubMed  Google Scholar 

  39. Prince S, Carreira S, Vance KW, Abrahams A, Goding CR . Tbx2 directly represses the expression of the p21(WAF1) cyclin-dependent kinase inhibitor. Cancer Res 2004; 64: 1669–1674.

    Article  CAS  PubMed  Google Scholar 

  40. Rodriguez M, Aladowicz E, Lanfrancone L, Goding CR . Tbx3 represses E-cadherin expression and enhances melanoma invasiveness. Cancer Res 2008; 68: 7872–7881.

    Article  CAS  PubMed  Google Scholar 

  41. Fan W, Huang X, Chen C, Gray J, Huang T . TBX3 and its isoform TBX3+2a are functionally distinctive in inhibition of senescence and are overexpressed in a subset of breast cancer cell lines. Cancer Res 2004; 64: 5132–5139.

    Article  CAS  PubMed  Google Scholar 

  42. Lyng H, Brovig RS, Svendsrud DH, Holm R, Kaalhus O, Knutstad K et al. Gene expressions and copy numbers associated with metastatic phenotypes of uterine cervical cancer. BMC Genomics 2006; 7: 268.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mahlamaki EH, Barlund M, Tanner M, Gorunova L, Hoglund M, Karhu R et al. Frequent amplification of 8q24, 11q, 17q, and 20q-specific genes in pancreatic cancer. Genes Chromosomes Cancer 2002; 35: 353–358.

    Article  CAS  PubMed  Google Scholar 

  44. Rowley M, Grothey E, Couch FJ . The role of Tbx2 and Tbx3 in mammary development and tumorigenesis. J Mammary Gland Biol Neoplasia 2004; 9: 109–118.

    Article  PubMed  Google Scholar 

  45. Sinclair CS, Adem C, Naderi A, Soderberg CL, Johnson M, Wu K et al. TBX2 is preferentially amplified in BRCA1- and BRCA2-related breast tumors. Cancer Res 2002; 62: 3587–3591.

    CAS  PubMed  Google Scholar 

  46. Peres J, Davis E, Mowla S, Bennett DC, Li JA, Wansleben S et al. The highly homologous T-box transcription factors, TBX2 and TBX3, have distinct roles in the oncogenic process. Genes Cancer 2010; 1: 272–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Redmond KL, Crawford NT, Farmer H, D'Costa ZC, O'Brien GJ, Buckley NE et al. T-box 2 represses NDRG1 through an EGR1-dependent mechanism to drive the proliferation of breast cancer cells. Oncogene 2010; 29: 3252–3262.

    Article  CAS  PubMed  Google Scholar 

  48. Relaix F, Polimeni M, Rocancourt D, Ponzetto C, Schafer BW, Buckingham M . The transcriptional activator PAX3-FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo. Genes Dev 2003; 17: 2950–2965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hollenbach AD, Sublett JE, McPherson CJ, Grosveld G . The Pax3-FKHR oncoprotein is unresponsive to the Pax3-associated repressor hDaxx. EMBO J 1999; 18: 3702–3711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu F, Cao J, Lv J, Dong L, Pier E, Xu GX et al. TBX2 expression is regulated by PAX3 in the melanocyte lineage. Pigment Cell Melanoma Res 2013; 26: 67–77.

    Article  CAS  PubMed  Google Scholar 

  51. Okamura H, Yoshida K, Morimoto H, Haneji T . PTEN expression elicited by EGR-1 transcription factor in calyculin A-induced apoptotic cells. J Cell Biochem 2005; 94: 117–125.

    Article  CAS  PubMed  Google Scholar 

  52. Virolle T, Adamson ED, Baron V, Birle D, Mercola D, Mustelin T et al. The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol 2001; 3: 1124–1128.

    Article  CAS  PubMed  Google Scholar 

  53. Singh S, Vinson C, Gurley CM, Nolen GT, Beggs ML, Nagarajan R et al. Impaired Wnt signaling in embryonal rhabdomyosarcoma cells from p53/c-fos double mutant mice. Am J Pathol 2010; 177: 2055–2066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Londhe P, Davie JK . Gamma interferon modulates myogenesis through the major histocompatibility complex class II transactivator, CIITA. Mol Cell Biol 2011; 31: 2854–2866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Londhe P, Davie JK . Sequential association of myogenic regulatory factors and E proteins at muscle-specific genes. Skelet Muscle 2011; 1: 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Terry Morgan, MD, PhD, Oregon Health and Sciences University for help with the statistical analysis of the archival RMS tumor samples. We thank Steven Verhulst, PhD, Southern Illinois University School of Medicine for help with the statistical analysis of the primary RMS tumor samples. This work was supported by grant 159609 from the American Cancer Society, Illinois Division to JD and by grant RAR 060017A from the National Institute of Health, NIAMS division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J K Davie.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Zhang, M., Williams, E. et al. TBX2 represses PTEN in rhabdomyosarcoma and skeletal muscle. Oncogene 35, 4212–4224 (2016). https://doi.org/10.1038/onc.2015.486

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.486

This article is cited by

Search

Quick links