Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Wnt-pathway corepressor TLE3 interacts with the histone methyltransferase KMT1A to inhibit differentiation in Rhabdomyosarcoma

Abstract

Rhabdomyosarcoma tumor cells resemble differentiating skeletal muscle cells, which unlike normal muscle cells, fail to undergo terminal differentiation, underlying their proliferative and metastatic properties. We identify the corepressor TLE3 as a key regulator of rhabdomyosarcoma tumorigenesis by inhibiting the Wnt-pathway. Loss of TLE3 function leads to Wnt-pathway activation, reduced proliferation, decreased migration, and enhanced differentiation in rhabdomyosarcoma cells. Muscle-specific TLE3-knockout results in enhanced expression of terminal myogenic differentiation markers during normal mouse development. TLE3-knockout rhabdomyosarcoma cell xenografts result in significantly smaller tumors characterized by reduced proliferation, increased apoptosis and enhanced differentiation. We demonstrate that TLE3 interacts with and recruits the histone methyltransferase KMT1A, leading to repression of target gene activation and inhibition of differentiation in rhabdomyosarcoma. A combination drug therapy regime to promote Wnt-pathway activation by the small molecule BIO and inhibit KMT1A by the drug chaetocin led to significantly reduced tumor volume, decreased proliferation, increased expression of differentiation markers and increased survival in rhabdomyosarcoma tumor-bearing mice. Thus, TLE3, the Wnt-pathway and KMT1A are excellent drug targets which can be exploited for treating rhabdomyosarcoma tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TLE3 regulates Wnt signaling and differentiation in rhabdomyosarcoma cells and skeletal muscle development.
Fig. 2: Loss of TLE3 function inhibits cell migration and proliferation in rhabdomyosarcoma cells.
Fig. 3: Loss of TLE3 function leads to reduced tumorigenic potential in rhabdomyosarcoma.
Fig. 4: Loss of TLE3 function enhances the anti-tumorigenic effect of 6-bromoindirubin-3’-oxime (BIO) in rhabdomyosarcoma.
Fig. 5: TLE3 interacts with the histone methyltransferase KMT1A to regulate differentiation in rhabdomyosarcoma.
Fig. 6: Simultaneous activation of the Wnt pathway by BIO and inhibition of KMT1A by chaetocin suppresses rhabdomyosarcoma tumor growth.
Fig. 7: Model showing the role of TLE3 and KMT1A in rhabdomyosarcoma.

Similar content being viewed by others

Data availability

The datasets generated and analyzed during this study are available from the corresponding author on reasonable request. RNA-seq data are available through GEO, GSE202614.

References

  1. Shern JF, Chen L, Chmielecki J, Wei JS, Patidar R, Rosenberg M, et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014;4:216–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yu PY, Guttridge DC. Dysregulated myogenesis in rhabdomyosarcoma. Curr Top Dev Biol. 2018;126:285–97.

    Article  PubMed  Google Scholar 

  3. Saini M, Verma A, Mathew SJ. SPRY2 is a novel MET interactor that regulates metastatic potential and differentiation in rhabdomyosarcoma. Cell Death Dis. 2018;9:237.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li S, Chen K, Zhang Y, Barnes SD, Jaichander P, Zheng Y, et al. Twist2 amplification in rhabdomyosarcoma represses myogenesis and promotes oncogenesis by redirecting MyoD DNA binding. Genes Dev. 2019;33:626–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kendall GC, Watson S, Xu L, LaVigne CA, Murchison W, Rakheja D, et al. PAX3-FOXO1 transgenic zebrafish models identify HES3 as a mediator of rhabdomyosarcoma tumorigenesis. Elife. 2018;7:e33800.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Skrzypek K, Kusienicka A, Trzyna E, Szewczyk B, Ulman A, Konieczny P, et al. SNAIL is a key regulator of alveolar rhabdomyosarcoma tumor growth and differentiation through repression of MYF5 and MYOD function. Cell Death Dis. 2018;9:643.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu Z, Zhang X, Lei H, Lam N, Carter S, Yockey O, et al. CASZ1 induces skeletal muscle and rhabdomyosarcoma differentiation through a feed-forward loop with MYOD and MYOG. Nat Commun. 2020;11:911.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. von Maltzahn J, Chang NC, Bentzinger CF, Rudnicki MA. Wnt signaling in myogenesis. Trends Cell Biol. 2012;22:602–9.

    Article  Google Scholar 

  9. Chen AE, Ginty DD, Fan CM. Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature. 2005;433:317–22.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Hutcheson DA, Zhao J, Merrell A, Haldar M, Kardon G. Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for beta-catenin. Genes Dev. 2009;23:997–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murphy MM, Keefe AC, Lawson JA, Flygare SD, Yandell M, Kardon G. Transiently active Wnt/beta-catenin signaling is not required but must be silenced for stem cell function during muscle regeneration. Stem Cell Rep. 2014;3:475–88.

    Article  CAS  Google Scholar 

  12. Agarwal M, Kumar P, Mathew SJ. The Groucho/Transducin-like enhancer of split protein family in animal development. IUBMB Life. 2015;67:472–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kokabu S, Nakatomi C, Matsubara T, Ono Y, Addison WN, Lowery JW, et al. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor. J Biol Chem. 2017;292:12885–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Agarwal M, Bharadwaj A, Mathew SJ. TLE4 regulates muscle stem cell quiescence and skeletal muscle differentiation. J Cell Sci. 2022;135:jcs256008.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar P, Zehra A, Saini M, Mathew SJ. Zeb1 and Tle3 are trans-factors that differentially regulate the expression of myosin heavy chain-embryonic and skeletal muscle differentiation. FASEB J. 2023;37:e23074.

    Article  CAS  PubMed  Google Scholar 

  16. Stewart E, McEvoy J, Wang H, Chen X, Honnell V, Ocarz M, et al. Identification of therapeutic targets in rhabdomyosarcoma through integrated genomic, epigenomic, and proteomic analyses. Cancer Cell. 2018;34:411–26.e419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mal AK. Histone methyltransferase Suv39h1 represses MyoD-stimulated myogenic differentiation. EMBO J. 2006;25:3323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee MH, Jothi M, Gudkov AV, Mal AK. Histone methyltransferase KMT1A restrains entry of alveolar rhabdomyosarcoma cells into a myogenic differentiated state. Cancer Res. 2011;71:3921–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Annavarapu SR, Cialfi S, Dominici C, Kokai GK, Uccini S, Ceccarelli S, et al. Characterization of Wnt/beta-catenin signaling in rhabdomyosarcoma. Lab Invest. 2013;93:1090–9.

    Article  CAS  PubMed  Google Scholar 

  20. Barrott JJ, Cash GM, Smith AP, Barrow JR, Murtaugh LC. Deletion of mouse Porcn blocks Wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome. Proc Natl Acad Sci USA. 2011;108:12752–7.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Villanueva CJ, Vergnes L, Wang J, Drew BG, Hong C, Tu Y, et al. Adipose subtype-selective recruitment of TLE3 or Prdm16 by PPARgamma specifies lipid storage versus thermogenic gene programs. Cell Metab. 2013;17:423–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Engleka KA, Gitler AD, Zhang M, Zhou DD, High FA, Epstein JA. Insertion of Cre into the Pax3 locus creates a new allele of Splotch and identifies unexpected Pax3 derivatives. Dev Biol. 2005;280:396–406.

    Article  CAS  PubMed  Google Scholar 

  23. Agarwal M, Sharma A, Kumar P, Kumar A, Bharadwaj A, Saini M, et al. Myosin heavy chain-embryonic regulates skeletal muscle differentiation during mammalian development. Development. 2020;147:dev184507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bharadwaj A, Sharma J, Singh J, Kumari M, Dargar T, Kalita B, et al. Musculoskeletal defects associated with myosin heavy chain-embryonic loss of function are mediated by the YAP signaling pathway. EMBO Mol Med. 2023;15:e17187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sharma A, Agarwal M, Kumar A, Kumar P, Saini M, Kardon G et al. Myosin heavy chain-embryonic is a crucial regulator of skeletal muscle development and differentiation. bioRxiv. 2018: 261685.

  26. Kunz M, Herrmann M, Wedlich D, Gradl D. Autoregulation of canonical Wnt signaling controls midbrain development. Dev Biol. 2004;273:390–401.

    Article  CAS  PubMed  Google Scholar 

  27. Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H. The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J. 2001;20:4935–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jamieson C, Lui C, Brocardo MG, Martino-Echarri E, Henderson BR. Rac1 augments Wnt signaling by stimulating beta-catenin-lymphoid enhancer factor-1 complex assembly independent of beta-catenin nuclear import. J Cell Sci. 2015;128:3933–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F. Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling. Cell. 2008;133:340–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rodrigues P, Macaya I, Bazzocco S, Mazzolini R, Andretta E, Dopeso H, et al. RHOA inactivation enhances Wnt signalling and promotes colorectal cancer. Nat Commun. 2014;5:5458.

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Thompson JJ, Williams CS. Protein phosphatase 2A in the regulation of Wnt signaling, stem cells, and cancer. Genes (Basel). 2018;9:121.

    Article  PubMed  Google Scholar 

  32. Seitz K, Dursch V, Harnos J, Bryja V, Gentzel M, Schambony A. beta-Arrestin interacts with the beta/gamma subunits of trimeric G-proteins and dishevelled in the Wnt/Ca(2+) pathway in xenopus gastrulation. PLoS One. 2014;9:e87132.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  33. Chen J, Rajasekaran M, Xia H, Kong SN, Deivasigamani A, Sekar K, et al. CDK1-mediated BCL9 phosphorylation inhibits clathrin to promote mitotic Wnt signalling. EMBO J. 2018;37:e99395.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wen CL, Huang K, Jiang LL, Lu XX, Dai YT, Shi MM, et al. An allosteric PGAM1 inhibitor effectively suppresses pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA. 2019;116:23264–73.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Langlands AJ, Carroll TD, Chen Y, Nathke I. Chir99021 and Valproic acid reduce the proliferative advantage of Apc mutant cells. Cell Death Dis. 2018;9:255.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen EY, DeRan MT, Ignatius MS, Grandinetti KB, Clagg R, McCarthy KM, et al. Glycogen synthase kinase 3 inhibitors induce the canonical WNT/beta-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma. Proc Natl Acad Sci USA. 2014;111:5349–54.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Bharathy N, Svalina MN, Settelmeyer TP, Cleary MM, Berlow NE, Airhart SD, et al. Preclinical testing of the glycogen synthase kinase-3beta inhibitor tideglusib for rhabdomyosarcoma. Oncotarget. 2017;8:62976–83.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kephart JJ, Tiller RG, Crose LE, Slemmons KK, Chen PH, Hinson AR, et al. Secreted frizzled-related protein 3 (SFRP3) is required for tumorigenesis of PAX3-FOXO1-positive alveolar rhabdomyosarcoma. Clin Cancer Res. 2015;21:4868–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Singh S, Vinson C, Gurley CM, Nolen GT, Beggs ML, Nagarajan R, et al. Impaired Wnt signaling in embryonal rhabdomyosarcoma cells from p53/c-fos double mutant mice. Am J Pathol. 2010;177:2055–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mal A, Harter ML. MyoD is functionally linked to the silencing of a muscle-specific regulatory gene prior to skeletal myogenesis. Proc Natl Acad Sci USA. 2003;100:1735–9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol. 2005;1:143–5.

    Article  CAS  PubMed  Google Scholar 

  42. Lai YS, Chen JY, Tsai HJ, Chen TY, Hung WC. The SUV39H1 inhibitor chaetocin induces differentiation and shows synergistic cytotoxicity with other epigenetic drugs in acute myeloid leukemia cells. Blood Cancer J. 2015;5:e313.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ragozzino E, Brancaccio M, Di Costanzo A, Scalabri F, Andolfi G, Wanderlingh LG, et al. 6-Bromoindirubin-3’-oxime intercepts GSK3 signaling to promote and enhance skeletal muscle differentiation affecting miR-206 expression in mice. Sci Rep. 2019;9:18091.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Saab R, Spunt SL, Skapek SX. Myogenesis and rhabdomyosarcoma the Jekyll and Hyde of skeletal muscle. Curr Top Dev Biol. 2011;94:197–234.

    Article  CAS  PubMed  Google Scholar 

  45. Tenente IM, Hayes MN, Ignatius MS, McCarthy K, Yohe M, Sindiri S, et al. Myogenic regulatory transcription factors regulate growth in rhabdomyosarcoma. Elife. 2017;6:e19214.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Krah NM, Narayanan SM, Yugawa DE, Straley JA, Wright CVE, MacDonald RJ, et al. Prevention and reversion of pancreatic tumorigenesis through a differentiation-based mechanism. Dev Cell. 2019;50:744–54.e744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Charrasse S, Comunale F, Fortier M, Portales-Casamar E, Debant A, Gauthier-Rouviere C. M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion. Mol Biol Cell. 2007;18:1734–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Szabo K, Varga D, Vegh AG, Liu N, Xiao X, Xu L, et al. Syndecan-4 affects myogenesis via Rac1-mediated actin remodeling and exhibits copy-number amplification and increased expression in human rhabdomyosarcoma tumors. Cell Mol Life Sci. 2022;79:122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vasyutina E, Martarelli B, Brakebusch C, Wende H, Birchmeier C. The small G-proteins Rac1 and Cdc42 are essential for myoblast fusion in the mouse. Proc Natl Acad Sci USA. 2009;106:8935–40.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Doumpas N, Lampart F, Robinson MD, Lentini A, Nestor CE, Cantu C, et al. TCF/LEF dependent and independent transcriptional regulation of Wnt/beta-catenin target genes. EMBO J. 2019;38:e98873.

    Article  PubMed  Google Scholar 

  51. Mahmoudi T, Li VS, Ng SS, Taouatas N, Vries RG, Mohammed S, et al. The kinase TNIK is an essential activator of Wnt target genes. EMBO J. 2009;28:3329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deschene ER, Myung P, Rompolas P, Zito G, Sun TY, Taketo MM, et al. beta-Catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche. Science. 2014;343:1353–6.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Takeo M, Hale CS, Ito M. Epithelium-derived Wnt ligands are essential for maintenance of underlying digit bone. J Invest Dermatol. 2016;136:1355–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hayes MN, McCarthy K, Jin A, Oliveira ML, Iyer S, Garcia SP, et al. Vangl2/RhoA signaling pathway regulates stem cell self-renewal programs and growth in rhabdomyosarcoma. Cell Stem Cell. 2018;22:414–27.e416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Palit SA, Vis D, Stelloo S, Lieftink C, Prekovic S, Bekers E, et al. TLE3 loss confers AR inhibitor resistance by facilitating GR-mediated human prostate cancer cell growth. Elife. 2019;8:e47430.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liu L, Zhang Y, Wong CC, Zhang J, Dong Y, Li X, et al. RNF6 promotes colorectal cancer by activating the Wnt/beta-Catenin Pathway via ubiquitination of TLE3. Cancer Res. 2018;78:1958–71.

    Article  CAS  PubMed  Google Scholar 

  57. Ogawa M, Yaginuma T, Nakatomi C, Nakajima T, Tada-Shigeyama Y, Addison WN, et al. Transducin-like enhancer of split 3 regulates proliferation of melanoma cells via histone deacetylase activity. Oncotarget. 2019;10:404–14.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Peng LN, Deng XY, Gan XX, Zhang JH, Ren GH, Shen F, et al. Targeting of TLE3 by miR-3677 in human breast cancer promotes cell proliferation, migration and invasion. Oncol Lett. 2020;19:1409–17.

    CAS  PubMed  Google Scholar 

  59. Pearson S, Loft A, Rajbhandari P, Simcox J, Lee S, Tontonoz P, et al. Loss of TLE3 promotes the mitochondrial program in beige adipocytes and improves glucose metabolism. Genes Dev. 2019;33:747–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Villanueva CJ, Waki H, Godio C, Nielsen R, Chou WL, Vargas L, et al. TLE3 is a dual-function transcriptional coregulator of adipogenesis. Cell Metab. 2011;13:413–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen X, Stewart E, Shelat AA, Qu C, Bahrami A, Hatley M, et al. Targeting oxidative stress in embryonal rhabdomyosarcoma. Cancer Cell. 2013;24:710–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Macaluso M, Cinti C, Russo G, Russo A, Giordano A. pRb2/p130-E2F4/5-HDAC1-SUV39H1-p300 and pRb2/p130-E2F4/5-HDAC1-SUV39H1-DNMT1 multimolecular complexes mediate the transcription of estrogen receptor-alpha in breast cancer. Oncogene. 2003;22:3511–7.

    Article  CAS  PubMed  Google Scholar 

  63. Dong C, Wu Y, Wang Y, Wang C, Kang T, Rychahou PG, et al. Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene. 2013;32:1351–62.

    Article  CAS  PubMed  Google Scholar 

  64. Lakshmikuttyamma A, Scott SA, DeCoteau JF, Geyer CR. Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene. 2010;29:576–88.

    Article  CAS  PubMed  Google Scholar 

  65. Blagitko-Dorfs N, Schlosser P, Greve G, Pfeifer D, Meier R, Baude A, et al. Combination treatment of acute myeloid leukemia cells with DNMT and HDAC inhibitors: predominant synergistic gene downregulation associated with gene body demethylation. Leukemia. 2019;33:945–56.

    Article  CAS  PubMed  Google Scholar 

  66. Liu X, Guo S, Liu X, Su L. Chaetocin induces endoplasmic reticulum stress response and leads to death receptor 5-dependent apoptosis in human non-small cell lung cancer cells. Apoptosis. 2015;20:1499–507.

    Article  CAS  PubMed  Google Scholar 

  67. Wang YC, Wang SA, Chen PH, Hsu TI, Yang WB, Chuang YP, et al. Variants of ubiquitin-specific peptidase 24 play a crucial role in lung cancer malignancy. Oncogene. 2016;35:3669–80.

    Article  CAS  PubMed  Google Scholar 

  68. Baumgart S, Glesel E, Singh G, Chen NM, Reutlinger K, Zhang J, et al. Restricted heterochromatin formation links NFATc2 repressor activity with growth promotion in pancreatic cancer. Gastroenterology. 2012;142:388–98.e381-387.

    Article  CAS  PubMed  Google Scholar 

  69. Babbio F, Pistore C, Curti L, Castiglioni I, Kunderfranco P, Brino L, et al. The SRA protein UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression. Oncogene. 2012;31:4878–87.

    Article  CAS  PubMed  Google Scholar 

  70. Pisignano G, Napoli S, Magistri M, Mapelli SN, Pastori C, Di Marco S, et al. A promoter-proximal transcript targeted by genetic polymorphism controls E-cadherin silencing in human cancers. Nat Commun. 2017;8:15622.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Yang Z, Wang H, Zhang N, Xing T, Zhang W, Wang G, et al. Chaetocin abrogates the self-renewal of bladder cancer stem cells via the suppression of the KMT1A-GATA3-STAT3 circuit. Front Cell Dev Biol. 2020;8:424.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Indian Council of Medical Research (grant number 5/13/35/2020/NCD-III), Wellcome Trust/DBT India Alliance Intermediate Fellowship (IA/I/13/1/500872) and Science and Engineering Research Board grants (grant number EMR/2016/005218 and CRG/2021/006250) awarded to SJM. We also acknowledge funding from the Regional Center for Biotechnology (RCB). BK is funded by a Science and Engineering Research Board National Postdoctoral Fellowship, AB by a senior research fellowship from the University Grants Commission (UGC) previously and by a senior research fellowship from the Indian Council of Medical Research (ICMR) currently, SS by a senior research fellowship from the Department of Biotechnology (DBT), and MA by a senior research fellowship from ICMR. We thank the RCB microscopy facility for imaging help and the small animal facility (SAF) at the NCR Biotech Science Cluster for help with the animal work. We thank Dr. Asoke Mal (Roswell Park Comprehensive Cancer Center, Buffalo, USA) for the 4RE-Luc, and Myogenin-Luc plasmids, Dr. Charles Murtaugh (University of Utah, Salt Lake City, USA) for the Wnt reporter TOPFLASH and FOPFLASH plasmids and Dr. Thomas Jenuwein (Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany) for the pCMV (myc)3 SUV39H1 plasmid. The Tle3floxed/+ was a kind gift from Dr. Claudio Villanueva (University of Utah, USA). The RH4 and RH28 ARMS cell lines are a kind gift from Dr. Peter Houghton (Greehey Children’s Cancer Research Institute, USA). We acknowledge past and present members of the SJM lab for valuable suggestions and inputs. We acknowledge the support of DBT e-Library Consortium (DeLCON) for providing access to e-resources.

Author information

Authors and Affiliations

Authors

Contributions

BK, AB, SS and SJM were involved in experimental design, BK, AB, SS, LP and MA carried out the experiments, BK, AB, SS, LP, GM, MA and SJM analysed and interpreted the results, BK and SJM wrote the manuscript with inputs from AB, SS, LP, GM and MA. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sam J. Mathew.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, B., Sahu, S., Bharadwaj, A. et al. The Wnt-pathway corepressor TLE3 interacts with the histone methyltransferase KMT1A to inhibit differentiation in Rhabdomyosarcoma. Oncogene 43, 524–538 (2024). https://doi.org/10.1038/s41388-023-02911-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02911-3

Search

Quick links