Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CD99 regulates neural differentiation of Ewing sarcoma cells through miR-34a-Notch-mediated control of NF-κB signaling

Abstract

Sarcomas are mesenchymal tumors characterized by blocked differentiation process. In Ewing sarcoma (EWS) both CD99 and EWS-FLI1 concur to oncogenesis and inhibition of differentiation. Here, we demonstrate that uncoupling CD99 from EWS-FLI1 by silencing the former, nuclear factor-κB (NF-κB) signaling is inhibited and the neural differentiation program is re-established. NF-κB inhibition passes through miR-34a-mediated repression of Notch pathway. CD99 counteracts EWS-FLI1 in controlling NF-κB signaling through the miR-34a, which is increased and secreted into exosomes released by CD99-silenced EWS cells. Delivery of exosomes from CD99-silenced cells was sufficient to induce neural differentiation in recipient EWS cells through miR-34a inhibition of Notch-NF-κB signaling. Notably, even the partial delivery of CD99 small interfering RNA may have a broad effect on the entire tumor cell population owing to the spread operated by their miR-34a-enriched exosomes, a feature opening to a new therapeutic option.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Womer RB, West DC, Krailo MD, Dickman PS, Pawel BR, Grier HE et al. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children's Oncology Group. J Clin Oncol 2012; 30: 4148–4154.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Magnan H, Goodbody CM, Riedel E, Pratilas CA, Wexler LH, Chou AJ . Ifosfamide dose-intensification for patients with metastatic Ewing sarcoma. Pediatr Blood Cancer 2015; 62: 594–597.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ginsberg JP, Goodman P, Leisenring W, Ness KK, Meyers PA, Wolden SL et al. Long-term survivors of childhood Ewing sarcoma: report from the childhood cancer survivor study. J Natl Cancer Inst 2010; 102: 1272–1283.

    PubMed  PubMed Central  Google Scholar 

  4. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 1992; 359: 162–165.

    CAS  PubMed  Google Scholar 

  5. Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT . A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nat Genet 1994; 6: 146–151.

    CAS  PubMed  Google Scholar 

  6. Lessnick SL, Ladanyi M . Molecular pathogenesis of Ewing sarcoma: new therapeutic and transcriptional targets. Annu Rev Pathol 2012; 7: 145–159.

    CAS  PubMed  Google Scholar 

  7. Riggi N, Suva ML, Suva D, Cironi L, Provero P, Tercier S et al. EWS-FLI-1 expression triggers a Ewing's sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res 2008; 68: 2176–2185.

    CAS  PubMed  Google Scholar 

  8. Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O . Mesenchymal stem cell features of Ewing tumors. Cancer Cell 2007; 11: 421–429.

    CAS  PubMed  Google Scholar 

  9. Ouchida M, Ohno T, Fujimura Y, Rao VN, Reddy ES . Loss of tumorigenicity of Ewing's sarcoma cells expressing antisense RNA to EWS-fusion transcripts. Oncogene 1995; 11: 1049–1054.

    CAS  PubMed  Google Scholar 

  10. Maksimenko A, Malvy C . Oncogene-targeted antisense oligonucleotides for the treatment of Ewing sarcoma. Expert Opin Ther Targets 2005; 9: 825–830.

    CAS  PubMed  Google Scholar 

  11. Tirode F, Surdez D, Ma X, Parker M, Le Deley MC, Bahrami A et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov 2014; 4: 1342–1353.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Crompton BD, Stewart C, Taylor-Weiner A, Alexe G, Kurek KC, Calicchio ML et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov 2014; 4: 1326–1341.

    CAS  PubMed  Google Scholar 

  13. Brohl AS, Solomon DA, Chang W, Wang J, Song Y, Sindiri S et al. The genomic landscape of the Ewing sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet 2014; 10: e1004475.

    PubMed  PubMed Central  Google Scholar 

  14. Armengol G, Tarkkanen M, Virolainen M, Forus A, Valle J, Bohling T et al. Recurrent gains of 1q, 8 and 12 in the Ewing family of tumours by comparative genomic hybridization. Br J Cancer 1997; 75: 1403–1409.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lopez-Guerrero JA, Pellin A, Noguera R, Carda C, Llombart-Bosch A . Molecular analysis of the 9p21 locus and p53 genes in Ewing family tumors. Lab Invest 2001; 81: 803–814.

    CAS  PubMed  Google Scholar 

  16. Huang HY, Illei PB, Zhao Z, Mazumdar M, Huvos AG, Healey JH et al. Ewing sarcomas with p53 mutation or p16/p14ARF homozygous deletion: a highly lethal subset associated with poor chemoresponse. J Clin Oncol 2005; 23: 548–558.

    CAS  PubMed  Google Scholar 

  17. Lessnick SL, Dacwag CS, Golub TR . The Ewing's sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts. Cancer Cell 2002; 1: 393–401.

    CAS  PubMed  Google Scholar 

  18. Toretsky JA, Kalebic T, Blakesley V, LeRoith D, Helman LJ . The insulin-like growth factor-I receptor is required for EWS/FLI-1 transformation of fibroblasts. J Biol Chem 1997; 272: 30822–30827.

    CAS  PubMed  Google Scholar 

  19. Rocchi A, Manara MC, Sciandra M, Zambelli D, Nardi F, Nicoletti G et al. CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby contributes to oncogenesis. J Clin Invest 2010; 120: 668–680.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gelin C, Aubrit F, Phalipon A, Raynal B, Cole S, Kaczorek M et al. The E2 antigen, a 32 kd glycoprotein involved in T-cell adhesion processes, is the MIC2 gene product. EMBO J 1989; 8: 3253–3259.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schenkel AR, Mamdouh Z, Chen X, Liebman RM, Muller WA . CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol 2002; 3: 143–150.

    CAS  PubMed  Google Scholar 

  22. Bernard G, Breittmayer JP, de Matteis M, Trampont P, Hofman P, Senik A et al. Apoptosis of immature thymocytes mediated by E2/CD99. J Immunol 1997; 158: 2543–2550.

    CAS  PubMed  Google Scholar 

  23. Alberti I, Bernard G, Rouquette-Jazdanian AK, Pelassy C, Pourtein M, Aussel C et al. CD99 isoforms expression dictates T cell functional outcomes. FASEB J 2002; 16: 1946–1948.

    PubMed  Google Scholar 

  24. Miyagawa Y, Okita H, Nakaijima H, Horiuchi Y, Sato B, Taguchi T et al. Inducible expression of chimeric EWS/ETS proteins confers Ewing's family tumor-like phenotypes to human mesenchymal progenitor cells. Mol Cell Biol 2008; 28: 2125–2137.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu-Lieskovan S, Zhang J, Wu L, Shimada H, Schofield DE, Triche TJ . EWS-FLI1 fusion protein up-regulates critical genes in neural crest development and is responsible for the observed phenotype of Ewing's family of tumors. Cancer Res 2005; 65: 4633–4644.

    CAS  PubMed  Google Scholar 

  26. Amaral AT, Manara MC, Berghuis D, Ordonez JL, Biscuola M, Lopez-Garcia MA et al. Characterization of human mesenchymal stem cells from ewing sarcoma patients. Pathogenetic implications. PLoS One 2014; 9: e85814.

    PubMed  PubMed Central  Google Scholar 

  27. Franzetti GA, Laud-Duval K, Bellanger D, Stern MH, Sastre-Garau X, Delattre O . MiR-30a-5p connects EWS-FLI1 and CD99, two major therapeutic targets in Ewing tumor. Oncogene 2013; 32: 3915–3921.

    CAS  PubMed  Google Scholar 

  28. Charytonowicz E, Terry M, Coakley K, Telis L, Remotti F, Cordon-Cardo C et al. PPARgamma agonists enhance ET-743-induced adipogenic differentiation in a transgenic mouse model of myxoid round cell liposarcoma. J Clin Invest 2012; 122: 886–898.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hayden MS, Ghosh S . Shared principles in NF-kappaB signaling. Cell 2008; 132: 344–362.

    CAS  PubMed  Google Scholar 

  30. Viatour P, Merville MP, Bours V, Chariot A . Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 2005; 30: 43–52.

    CAS  PubMed  Google Scholar 

  31. Rorie CJ, Thomas VD, Chen P, Pierce HH, O'Bryan JP, Weissman BE . The Ews/Fli-1 fusion gene switches the differentiation program of neuroblastomas to Ewing sarcoma/peripheral primitive neuroectodermal tumors. Cancer Res 2004; 64: 1266–1277.

    CAS  PubMed  Google Scholar 

  32. Teitell MA, Thompson AD, Sorensen PH, Shimada H, Triche TJ, Denny CT . EWS/ETS fusion genes induce epithelial and neuroectodermal differentiation in NIH 3T3 fibroblasts. Lab Invest 1999; 79: 1535–1543.

    CAS  PubMed  Google Scholar 

  33. Gonzalez I, Vicent S, de Alava E, Lecanda F . EWS/FLI-1 oncoprotein subtypes impose different requirements for transformation and metastatic activity in a murine model. J Mol Med (Berl) 2007; 85: 1015–1029.

    CAS  Google Scholar 

  34. Hayden MS, Ghosh S . Regulation of NF-kappaB by TNF family cytokines. Semin Immunol 2014; 26: 253–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sasaki CY, Barberi TJ, Ghosh P, Longo DL . Phosphorylation of RelA/p65 on serine 536 defines an I{kappa}B{alpha}-independent NF-{kappa}B pathway. J Biol Chem 2005; 280: 34538–34547.

    CAS  PubMed  Google Scholar 

  36. Staudt LM . Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol 2010; 2: a000109.

    PubMed  PubMed Central  Google Scholar 

  37. Wang Z, Banerjee S, Li Y, Rahman KM, Zhang Y, Sarkar FH . Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res 2006; 66: 2778–2784.

    CAS  PubMed  Google Scholar 

  38. Wang Z, Zhang Y, Banerjee S, Li Y, Sarkar FH . Inhibition of nuclear factor kappab activity by genistein is mediated via Notch-1 signaling pathway in pancreatic cancer cells. Int J Cancer 2006; 118: 1930–1936.

    CAS  PubMed  Google Scholar 

  39. Nakatani F, Ferracin M, Manara MC, Ventura S, Del Monaco V, Ferrari S et al. miR-34a predicts survival of Ewing's sarcoma patients and directly influences cell chemo-sensitivity and malignancy. J Pathol 2012; 226: 796–805.

    CAS  PubMed  Google Scholar 

  40. Marino MT, Grilli A, Baricordi C, Manara MC, Ventura S, Pinca RS et al. Prognostic significance of miR-34a in Ewing sarcoma is associated with cyclin D1 and ki-67 expression. Ann Oncol 2014; 25: 2080–2086.

    CAS  PubMed  Google Scholar 

  41. Prasad S, Ravindran J, Aggarwal BB . NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem 2010; 336: 25–37.

    CAS  PubMed  Google Scholar 

  42. Nogueira L, Ruiz-Ontanon P, Vazquez-Barquero A, Lafarga M, Berciano MT, Aldaz B et al. Blockade of the NFkappaB pathway drives differentiating glioblastoma-initiating cells into senescence both in vitro and in vivo. Oncogene 2011; 30: 3537–3548.

    CAS  PubMed  Google Scholar 

  43. Sabolek M, Herborg A, Schwarz J, Storch A . Dexamethasone blocks astroglial differentiation from neural precursor cells. NeuroReport 2006; 17: 1719–1723.

    CAS  PubMed  Google Scholar 

  44. Ozeki A, Suzuki K, Suzuki M, Ozawa H, Yamashita S . Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation. NeuroReport 2012; 23: 290–293.

    PubMed  Google Scholar 

  45. De Molfetta GA, Luciola Zanette D, Alexandre Panepucci R, Dos Santos AR, da Silva WA Jr, Antonio Zago M . Role of NFKB2 on the early myeloid differentiation of CD34+ hematopoietic stem/progenitor cells. Differentiation 2010; 80: 195–203.

    PubMed  Google Scholar 

  46. Vaira S, Johnson T, Hirbe AC, Alhawagri M, Anwisye I, Sammut B et al. RelB is the NF-kappaB subunit downstream of NIK responsible for osteoclast differentiation. Proc Natl Acad Sci USA 2008; 105: 3897–3902.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ahmed AA, Sherman AK, Pawel BR . Expression of therapeutic targets in Ewing sarcoma family tumors. Hum Pathol 2012; 43: 1077–1083.

    CAS  PubMed  Google Scholar 

  48. Javelaud D, Wietzerbin J, Delattre O, Besancon F . Induction of p21Waf1/Cip1 by TNFalpha requires NF-kappaB activity and antagonizes apoptosis in Ewing tumor cells. Oncogene 2000; 19: 61–68.

    CAS  PubMed  Google Scholar 

  49. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S et al. NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 2006; 281: 30373–30382.

    CAS  PubMed  Google Scholar 

  50. Javelaud D, Poupon MF, Wietzerbin J, Besancon F . Inhibition of constitutive NF-kappa B activity suppresses tumorigenicity of Ewing sarcoma EW7 cells. Int J Cancer 2002; 98: 193–198.

    CAS  PubMed  Google Scholar 

  51. Sonnemann J, Dreyer L, Hartwig M, Palani CD, Hong le TT, Klier U et al. Histone deacetylase inhibitors induce cell death and enhance the apoptosis-inducing activity of TRAIL in Ewing's sarcoma cells. J Cancer Res Clin Oncol 2007; 133: 847–858.

    CAS  PubMed  Google Scholar 

  52. Sonnemann J, Palani CD, Wittig S, Becker S, Eichhorn F, Voigt A et al. Anticancer effects of the p53 activator nutlin-3 in Ewing's sarcoma cells. Eur J Cancer 2011; 47: 1432–1441.

    CAS  PubMed  Google Scholar 

  53. Lagirand-Cantaloube J, Laud K, Lilienbaum A, Tirode F, Delattre O, Auclair C et al. EWS-FLI1 inhibits TNFalpha-induced NFkappaB-dependent transcription in Ewing sarcoma cells. Biochem Biophys Res Commun 2010; 399: 705–710.

    CAS  PubMed  Google Scholar 

  54. von Levetzow C, Jiang X, Gwye Y, von Levetzow G, Hung L, Cooper A et al. Modeling initiation of Ewing sarcoma in human neural crest cells. PLoS One 2011; 6: e19305.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Widera D, Mikenberg I, Kaltschmidt B, Kaltschmidt C . Potential role of NF-kappaB in adult neural stem cells: the underrated steersman? Int J Dev Neurosci 2006; 24: 91–102.

    CAS  PubMed  Google Scholar 

  56. Yang C, Atkinson SP, Vilella F, Lloret M, Armstrong L, Mann DA et al. Opposing putative roles for canonical and noncanonical NFkappaB signaling on the survival, proliferation, and differentiation potential of human embryonic stem cells. Stem Cells 2010; 28: 1970–1980.

    CAS  PubMed  Google Scholar 

  57. Hess K, Ushmorov A, Fiedler J, Brenner RE, Wirth T . TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway. Bone 2009; 45: 367–376.

    CAS  PubMed  Google Scholar 

  58. Cho HH, Shin KK, Kim YJ, Song JS, Kim JM, Bae YC et al. NF-kappaB activation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZ expression. J Cell Physiol 2010; 223: 168–177.

    CAS  PubMed  Google Scholar 

  59. Osipo C, Golde TE, Osborne BA, Miele LA . Off the beaten pathway: the complex cross talk between Notch and NF-kappaB. Lab Invest 2008; 88: 11–17.

    CAS  PubMed  Google Scholar 

  60. Ban J, Bennani-Baiti IM, Kauer M, Schaefer KL, Poremba C, Jug G et al. EWS-FLI1 suppresses NOTCH-activated p53 in Ewing's sarcoma. Cancer Res 2008; 68: 7100–7109.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bennani-Baiti IM, Aryee DN, Ban J, Machado I, Kauer M, Muhlbacher K et al. Notch signalling is off and is uncoupled from HES1 expression in Ewing's sarcoma. J Pathol 2011; 225: 353–363.

    CAS  PubMed  Google Scholar 

  62. Wang Y, Chan SL, Miele L, Yao PJ, Mackes J, Ingram DK et al. Involvement of Notch signaling in hippocampal synaptic plasticity. Proc Natl Acad Sci USA 2004; 101: 9458–9462.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Baliko F, Bright T, Poon R, Cohen B, Egan SE, Alman BA . Inhibition of notch signaling induces neural differentiation in Ewing sarcoma. Am J Pathol 2007; 170: 1686–1694.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pang RT, Leung CO, Lee CL, Lam KK, Ye TM, Chiu PC et al. MicroRNA-34a is a tumor suppressor in choriocarcinoma via regulation of Delta-like1. BMC Cancer 2013; 13: 25.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Braicu C, Tomuleasa C, Monroig P, Cucuianu A, Berindan-Neagoe I, Calin GA . Exosomes as divine messengers: are they the Hermes of modern molecular oncology? Cell Death Differ 2015; 22: 34–45.

    CAS  PubMed  Google Scholar 

  66. Pata S, Otahal P, Brdicka T, Laopajon W, Mahasongkram K, Kasinrerk W . Association of CD99 short and long forms with MHC class I, MHC class II and tetraspanin CD81 and recruitment into immunological synapses. BMC Res Notes 2011; 4: 293.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Carrillo J, Garcia-Aragoncillo E, Azorin D, Agra N, Sastre A, Gonzalez-Mediero I et al. Cholecystokinin down-regulation by RNA interference impairs Ewing tumor growth. Clin Cancer Res 2007; 13: 2429–2440.

    CAS  PubMed  Google Scholar 

  68. Di Martino MT, Leone E, Amodio N, Foresta U, Lionetti M, Pitari MR et al. Synthetic miR-34a mimics as a novel therapeutic agent for multiple myeloma: in vitro and in vivo evidence. Clin Cancer Res 2012; 18: 6260–6270.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Garofalo C, Mancarella C, Grilli A, Manara MC, Astolfi A, Marino MT et al. Identification of common and distinctive mechanisms of resistance to different anti-IGF-IR agents in Ewing's sarcoma. Mol Endocrinol 2012; 26: 1603–1616.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 2001; 25: 402–408.

    CAS  PubMed  Google Scholar 

  71. Kok MG, Halliani A, Moerland PD, Meijers JC, Creemers EE, Pinto-Sietsma SJ . Normalization panels for the reliable quantification of circulating microRNAs by RT–qPCR. FASEB J 2015; 29: 3853–3862.

    CAS  PubMed  Google Scholar 

  72. McDermott AM, Kerin MJ, Miller N . Identification and validation of miRNAs as endogenous controls for RQ-PCR in blood specimens for breast cancer studies. PLoS One 2013; 8: e83718.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to Cristina Ghinelli for editing the manuscript. We wish to thank Dr Gianfranco Mattia for the assessment of immunofluorescence analysis on the exosome fusion. We are also grateful to Prof. Alain Israel and Dr Johannes Schmid for sharing NF-κB reporter and plasmids. This work was supported by grants from the Italian Association for Cancer Research (AIRC project: IG2013_14049 to KS; IG2012_13247 to AC), Ministry of Education, Research and Universities (FIRB project: RBAP11884 M_005 to KS), Ministry of Health (PROVABES project: PER-2011-2353839 to PP and KS), Austrian Science Fund (project: P24708-B21 and PROVABES project: I-1225-B19 to HK). Selena Ventura is in receipt of the fellowship ‘Guglielmina Lucatello e Gino Mazzega’ granted by Fondazione Italiana per la Ricerca sul Cancro (FIRC project code: 13811).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Scotlandi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventura, S., Aryee, D., Felicetti, F. et al. CD99 regulates neural differentiation of Ewing sarcoma cells through miR-34a-Notch-mediated control of NF-κB signaling. Oncogene 35, 3944–3954 (2016). https://doi.org/10.1038/onc.2015.463

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.463

This article is cited by

Search

Quick links