Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Oncogenic PTEN functions and models in T-cell malignancies

Subjects

Abstract

PTEN is a protein phosphatase that is crucial to prevent the malignant transformation of T-cells. Although a numerous mechanisms regulate its expression and function, they are often altered in T-cell acute lymphoblastic leukaemias and T-cell lymphomas. As such, PTEN inactivation frequently occurs in these malignancies, where it can be associated with chemotherapy resistance and poor prognosis. Different Pten knockout models recapitulated the development of T-cell leukaemia/lymphoma, demonstrating that PTEN loss is at the center of a complex oncogenic network that sustains and drives tumorigenesis via the activation of multiple signalling pathways. These aspects and their therapeutic implications are discussed in this review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science (New York, NY) 1997; 275: 1943–1947.

    Article  CAS  Google Scholar 

  2. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15: 356–362.

    Article  CAS  PubMed  Google Scholar 

  3. Myers MP, Stolarov JP, Eng C, Li J, Wang SI, Wigler MH et al. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci USA 1997; 94: 9052–9057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campbell RB, Liu F, Ross AH . Allosteric activation of PTEN phosphatase by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 2003; 278: 33617–33620.

    Article  CAS  PubMed  Google Scholar 

  5. Walker SM, Leslie NR, Perera NM, Batty IH, Downes CP . The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif. Biochem J 2004; 379: 301–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y et al. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 1999; 99: 323–334.

    Article  CAS  PubMed  Google Scholar 

  7. Naguib A, Bencze G, Cho H, Zheng W, Tocilj A, Elkayam E et al. PTEN functions by recruitment to cytoplasmic vesicles. Mol Cell 2015; 58: 255–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Georgescu MM, Kirsch KH, Kaloudis P, Yang H, Pavletich NP, Hanafusa H . Stabilization and productive positioning roles of the C2 domain of PTEN tumor suppressor. Cancer Res 2000; 60: 7033–7038.

    CAS  PubMed  Google Scholar 

  9. Raftopoulou M, Etienne-Manneville S, Self A, Nicholls S, Hall A . Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. Science (New York, NY) 2004; 303: 1179–1181.

    Article  CAS  Google Scholar 

  10. Vazquez F, Ramaswamy S, Nakamura N, Sellers WR . Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 2000; 20: 5010–5018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Planchon SM, Waite KA, Eng C . The nuclear affairs of PTEN. J Cell Sci 2008; 121: 249–253.

    Article  CAS  PubMed  Google Scholar 

  12. Denning G, Jean-Joseph B, Prince C, Durden DL, Vogt PK . A short N-terminal sequence of PTEN controls cytoplasmic localization and is required for suppression of cell growth. Oncogene 2007; 26: 3930–3940.

    Article  CAS  PubMed  Google Scholar 

  13. Chung JH, Ginn-Pease ME, Eng C . Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has nuclear localization signal-like sequences for nuclear import mediated by major vault protein. Cancer Res 2005; 65: 4108–4116.

    Article  CAS  PubMed  Google Scholar 

  14. Hopkins BD, Fine B, Steinbach N, Dendy M, Rapp Z, Shaw J et al. A secreted PTEN phosphatase that enters cells to alter signaling and survival. Science (New York, NY) 2013; 341: 399–402.

    Article  CAS  Google Scholar 

  15. Liang H, He S, Yang J, Jia X, Wang P, Chen X et al. PTENalpha, a PTEN isoform translated through alternative initiation, regulates mitochondrial function and energy metabolism. Cell Metab 2014; 19: 836–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535–1548.

    Article  CAS  PubMed  Google Scholar 

  17. Aifantis I, Raetz E, Buonamici S . Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 2008; 8: 380–390.

    Article  CAS  PubMed  Google Scholar 

  18. Van Vlierberghe P, Ferrando A . The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 2012; 122: 3398–3406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 2009; 114: 647–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jotta PY, Ganazza MA, Silva A, Viana MB, da Silva MJ, Zambaldi LJ et al. Negative prognostic impact of PTEN mutation in pediatric T-cell acute lymphoblastic leukemia. Leukemia 2010; 24: 239–242.

    Article  CAS  PubMed  Google Scholar 

  21. Maser RS, Choudhury B, Campbell PJ, Feng B, Wong KK, Protopopov A et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 2007; 447: 966–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trinquand A, Tanguy-Schmidt A, Ben Abdelali R, Lambert J, Beldjord K, Lengline E et al. Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia Study. J Clin Oncol 2013; 31: 4333–4342.

    Article  CAS  PubMed  Google Scholar 

  23. Zuurbier L, Petricoin EF, Vuerhard MJ, Calvert V, Kooi C, Buijs-Gladdines J et al. The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia. Haematologica 2012; 97: 1405–1413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bandapalli OR, Zimmermann M, Kox C, Stanulla M, Schrappe M, Ludwig WD et al. NOTCH1 activation clinically antagonizes the unfavorable effect of PTEN inactivation in BFM-treated children with precursor T-cell acute lymphoblastic leukemia. Haematologica 2013; 98: 928–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 2007; 13: 1203–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Silva A, Yunes JA, Cardoso BA, Martins LR, Jotta PY, Abecasis M et al. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest 2008; 118: 3762–3774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jenkinson S, Kirkwood AA, Goulden N, Vora A, Linch DC, Gale RE . Impact of PTEN abnormalities on outcome in pediatric patients with T-cell acute lymphoblastic leukemia treated on the MRC UKALL2003 trial. Leukemia 2015, e-pub ahead of print 29 July 2015 doi:10.1038/leu.2015.206.

  28. Georgescu MM, Kirsch KH, Akagi T, Shishido T, Hanafusa H . The tumor-suppressor activity of PTEN is regulated by its carboxyl-terminal region. Proc Natl Acad Sci USA 1999; 96: 10182–10187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mendes RD, Sarmento LM, Cante-Barrett K, Zuurbier L, Buijs-Gladdines JG, Povoa V et al. PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events. Blood 2014; 124: 567–578.

    Article  CAS  PubMed  Google Scholar 

  30. Remke M, Pfister S, Kox C, Toedt G, Becker N, Benner A et al. High-resolution genomic profiling of childhood T-ALL reveals frequent copy-number alterations affecting the TGF-beta and PI3K-AKT pathways and deletions at 6q15-16.1 as a genomic marker for unfavorable early treatment response. Blood 2009; 114: 1053–1062.

    Article  CAS  PubMed  Google Scholar 

  31. Cristofoletti C, Picchio MC, Lazzeri C, Tocco V, Pagani E, Bresin A et al. Comprehensive analysis of PTEN status in Sezary syndrome. Blood 2013; 122: 3511–3520.

    Article  CAS  PubMed  Google Scholar 

  32. Papadavid E, Korkolopoulou P, Levidou G, Saetta AA, Papadaki T, Siakantaris M et al. In situ assessment of PI3K and PTEN alterations in mycosis fungoides: correlation with clinicopathological features. Exp Dermatol 2014; 23: 931–933.

    Article  CAS  PubMed  Google Scholar 

  33. Scarisbrick JJ, Woolford AJ, Russell-Jones R, Whittaker SJ . Loss of heterozygosity on 10q and microsatellite instability in advanced stages of primary cutaneous T-cell lymphoma and possible association with homozygous deletion of PTEN. Blood 2000; 95: 2937–2942.

    CAS  PubMed  Google Scholar 

  34. Uner AH, Saglam A, Han U, Hayran M, Sungur A, Ruacan S . PTEN and p27 expression in mature T-cell and NK-cell neoplasms. Leuk Lymphoma 2005; 46: 1463–1470.

    Article  CAS  PubMed  Google Scholar 

  35. Gazzola A, Bertuzzi C, Agostinelli C, Righi S, Pileri SA, Piccaluga PP . Physiological PTEN expression in peripheral T-cell lymphoma not otherwise specified. Haematologica 2009; 94: 1036–1037.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Silva A, Jotta PY, Silveira AB, Ribeiro D, Brandalise SR, Yunes JA et al. Regulation of PTEN by CK2 and Notch1 in primary T-cell acute lymphoblastic leukemia: rationale for combined use of CK2- and gamma-secretase inhibitors. Haematologica 2010; 95: 674–678.

    Article  CAS  PubMed  Google Scholar 

  37. Weng AP, Ferrando AA, Lee W, JPt Morris, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science (New York, NY) 2004; 306: 269–271.

    Article  CAS  Google Scholar 

  38. Medyouf H, Gao X, Armstrong F, Gusscott S, Liu Q, Gedman AL et al. Acute T-cell leukemias remain dependent on Notch signaling despite PTEN and INK4A/ARF loss. Blood 2010; 115: 1175–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mavrakis KJ, Wolfe AL, Oricchio E, Palomero T, de Keersmaecker K, McJunkin K et al. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol 2010; 12: 372–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP . A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465: 1033–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 2011; 147: 344–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grander D et al. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 2013; 20: 440–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakahata S, Ichikawa T, Maneesaay P, Saito Y, Nagai K, Tamura T et al. Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers. Nat Commun 2014; 5: 3393.

    Article  CAS  PubMed  Google Scholar 

  44. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP . Pten is essential for embryonic development and tumour suppression. Nat Genet 1998; 19: 348–355.

    Article  CAS  PubMed  Google Scholar 

  45. Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA 1999; 96: 1563–1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stambolic V, Tsao MS, Macpherson D, Suzuki A, Chapman WB, Mak TW . High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/- mice. Cancer Res 2000; 60: 3605–3611.

    CAS  PubMed  Google Scholar 

  47. Suzuki A, de la Pompa JL, Stambolic V, Elia AJ, Sasaki T, del Barco Barrantes I et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol 1998; 8: 1169–1178.

    Article  CAS  PubMed  Google Scholar 

  48. Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP . Impaired Fas response and autoimmunity in Pten+/- mice. Science (New York, NY) 1999; 285: 2122–2125.

    Article  CAS  Google Scholar 

  49. Freeman D, Lesche R, Kertesz N, Wang S, Li G, Gao J et al. Genetic background controls tumor development in PTEN-deficient mice. Cancer Res 2006; 66: 6492–6496.

    Article  CAS  PubMed  Google Scholar 

  50. Svensson RU, Haverkamp JM, Thedens DR, Cohen MB, Ratliff TL, Henry MD . Slow disease progression in a C57BL/6 pten-deficient mouse model of prostate cancer. Am J Pathol 2011; 179: 502–512.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A et al. Subtle variations in Pten dose determine cancer susceptibility. Nat Genet. 2010; 42: 454–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475–482.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006; 441: 518–522.

    Article  CAS  PubMed  Google Scholar 

  54. Kuhn R, Schwenk F, Aguet M, Rajewsky K . Inducible gene targeting in mice. Science (New York, NY) 1995; 269: 1427–1429.

    Article  CAS  Google Scholar 

  55. Tesio M, Oser GM, Baccelli I, Blanco-Bose W, Wu H, Gothert JR et al. Pten loss in the bone marrow leads to G-CSF-mediated HSC mobilization. J Exp Med 2013; 210: 2337–2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gothert JR, Gustin SE, Hall MA, Green AR, Gottgens B, Izon DJ et al. In vivo fate-tracing studies using the Scl stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood 2005; 105: 2724–2732.

    Article  CAS  PubMed  Google Scholar 

  57. Guo W, Lasky JL, Chang CJ, Mosessian S, Lewis X, Xiao Y et al. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 2008; 453: 529–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guo W, Schubbert S, Chen JY, Valamehr B, Mosessian S, Shi H et al. Suppression of leukemia development caused by PTEN loss. Proc Natl Acad Sci USA 2011; 108: 1409–1414.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schubbert S, Cardenas A, Chen H, Garcia C, Guo W, Bradner J et al. Targeting the MYC and PI3K pathways eliminates leukemia-initiating cells in T-cell acute lymphoblastic leukemia. Cancer Res 2014; 74: 7048–7059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. La Starza R, Borga C, Barba G, Pierini V, Schwab C, Matteucci C et al. Genetic profile of T-cell acute lymphoblastic leukemias with MYC translocations. Blood 2014; 124: 3577–3582.

    Article  CAS  PubMed  Google Scholar 

  61. Clappier E, Gerby B, Sigaux F, Delord M, Touzri F, Hernandez L et al. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse. J Exp Med 2011; 208: 653–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hagenbeek TJ, Naspetti M, Malergue F, Garcon F, Nunes JA, Cleutjens KB et al. The loss of PTEN allows TCR alphabeta lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling. J Exp Med 2004; 200: 883–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hagenbeek TJ, Spits H . T-cell lymphomas in T-cell-specific Pten-deficient mice originate in the thymus. Leukemia 2008; 22: 608–619.

    Article  CAS  PubMed  Google Scholar 

  64. Suzuki A, Yamaguchi MT, Ohteki T, Sasaki T, Kaisho T, Kimura Y et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 2001; 14: 523–534.

    Article  CAS  PubMed  Google Scholar 

  65. Xue L, Nolla H, Suzuki A, Mak TW, Winoto A . Normal development is an integral part of tumorigenesis in T cell-specific PTEN-deficient mice. Proc Natl Acad Sci USA 2008; 105: 2022–2027.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu X, Karnell JL, Yin B, Zhang R, Zhang J, Li P et al. Distinct roles for PTEN in prevention of T cell lymphoma and autoimmunity in mice. J Clin Invest 2010; 120: 2497–2507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Soond DR, Garcon F, Patton DT, Rolf J, Turner M, Scudamore C et al. Pten loss in CD4 T cells enhances their helper function but does not lead to autoimmunity or lymphoma. J Immunol 2012; 188: 5935–5943.

    Article  CAS  PubMed  Google Scholar 

  68. Locke FL, Zha YY, Zheng Y, Driessens G, Gajewski TF . Conditional deletion of PTEN in peripheral T cells augments TCR-mediated activation but does not abrogate CD28 dependency or prevent anergy induction. J Immunol 2013; 191: 1677–1685.

    Article  CAS  PubMed  Google Scholar 

  69. Piovan E, Yu J, Tosello V, Herranz D, Ambesi-Impiombato A, Da Silva AC et al. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell 2013; 24: 766–776.

    Article  CAS  PubMed  Google Scholar 

  70. Bayascas JR, Leslie NR, Parsons R, Fleming S, Alessi DR . Hypomorphic mutation of PDK1 suppresses tumorigenesis in PTEN(+/-) mice. Curr Biol 2005; 15: 1839–1846.

    Article  CAS  PubMed  Google Scholar 

  71. Finlay DK, Sinclair LV, Feijoo C, Waugh CM, Hagenbeek TJ, Spits H et al. Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes. J Exp Med 2009; 206: 2441–2454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kharas MG, Okabe R, Ganis JJ, Gozo M, Khandan T, Paktinat M et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 2010; 115: 1406–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Malstrom S, Tili E, Kappes D, Ceci JD, Tsichlis PN . Tumor induction by an Lck-MyrAkt transgene is delayed by mechanisms controlling the size of the thymus. Proc Natl Acad Sci USA 2001; 98: 14967–14972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tan Y, Timakhov RA, Rao M, Altomare DA, Xu J, Liu Z et al. A novel recurrent chromosomal inversion implicates the homeobox gene Dlx5 in T-cell lymphomas from Lck-Akt2 transgenic mice. Cancer Res 2008; 68: 1296–1302.

    Article  CAS  PubMed  Google Scholar 

  75. Subramaniam PS, Whye DW, Efimenko E, Chen J, Tosello V, De Keersmaecker K et al. Targeting nonclassical oncogenes for therapy in T-ALL. Cancer Cell 2012; 21: 459–472.

    Article  CAS  PubMed  Google Scholar 

  76. Bonnet M, Loosveld M, Montpellier B, Navarro JM, Quilichini B, Picard C et al. Posttranscriptional deregulation of MYC via PTEN constitutes a major alternative pathway of MYC activation in T-cell acute lymphoblastic leukemia. Blood 2011; 117: 6650–6659.

    Article  CAS  PubMed  Google Scholar 

  77. Blackburn JS, Liu S, Wilder JL, Dobrinski KP, Lobbardi R, Moore FE et al. Clonal evolution enhances leukemia-propagating cell frequency in T cell acute lymphoblastic leukemia through Akt/mTORC1 pathway activation. Cancer Cell 2014; 25: 366–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kalaitzidis D, Sykes SM, Wang Z, Punt N, Tang Y, Ragu C et al. mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis. Cell Stem Cell 2012; 11: 429–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Magee JA, Ikenoue T, Nakada D, Lee JY, Guan KL, Morrison SJ . Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell 2012; 11: 415–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Signer RA, Magee JA, Salic A, Morrison SJ . Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 2014; 509: 49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tandon P, Gallo CA, Khatri S, Barger JF, Yepiskoposyan H, Plas DR . Requirement for ribosomal protein S6 kinase 1 to mediate glycolysis and apoptosis resistance induced by Pten deficiency. Proc Natl Acad Sci USA 2011; 108: 2361–2365.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hsieh AC, Costa M, Zollo O, Davis C, Feldman ME, Testa JR et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 2010; 17: 249–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gu J, Tamura M, Pankov R, Danen EH, Takino T, Matsumoto K et al. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol 1999; 146: 389–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM . Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science (New York, NY) 1998; 280: 1614–1617.

    Article  CAS  Google Scholar 

  85. You D, Xin J, Volk A, Wei W, Schmidt R, Scurti G et al. FAK mediates a compensatory survival signal parallel to PI3K-AKT in PTEN-null T-ALL cells. Cell Rep 2015; 10: 2055–2068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Miething C, Scuoppo C, Bosbach B, Appelmann I, Nakitandwe J, Ma J et al. PTEN action in leukaemia dictated by the tissue microenvironment. Nature 2014; 510: 402–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Newton RH, Lu Y, Papa A, Whitcher GH, Kang YJ, Yan C et al. Suppression of T-cell lymphomagenesis in mice requires PTEN phosphatase activity. Blood 2015; 125: 852–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee JY, Nakada D, Yilmaz OH, Tothova Z, Joseph NM, Lim MS et al. mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 2010; 7: 593–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dose M, Emmanuel AO, Chaumeil J, Zhang J, Sun T, Germar K et al. beta-Catenin induces T-cell transformation by promoting genomic instability. Proc Natl Acad Sci USA 2014; 111: 391–396.

    Article  CAS  PubMed  Google Scholar 

  90. Chiarini F, Del Sole M, Mongiorgi S, Gaboardi GC, Cappellini A, Mantovani I et al. The novel Akt inhibitor, perifosine, induces caspase-dependent apoptosis and downregulates P-glycoprotein expression in multidrug-resistant human T-acute leukemia cells by a JNK-dependent mechanism. Leukemia 2008; 22: 1106–1116.

    Article  CAS  PubMed  Google Scholar 

  91. Fala F, Blalock WL, Tazzari PL, Cappellini A, Chiarini F, Martinelli G et al. Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor (2S)-1-(1H-Indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan2-ami ne (A443654) in T-cell acute lymphoblastic leukemia. Mol Pharmacol 2008; 74: 884–895.

    Article  CAS  PubMed  Google Scholar 

  92. Grimaldi C, Chiarini F, Tabellini G, Ricci F, Tazzari PL, Battistelli M et al. AMP-dependent kinase/mammalian target of rapamycin complex 1 signaling in T-cell acute lymphoblastic leukemia: therapeutic implications. Leukemia 2012; 26: 91–100.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang J, Xiao Y, Guo Y, Breslin P, Zhang S, Wei W et al. Differential requirements for c-Myc in chronic hematopoietic hyperplasia and acute hematopoietic malignancies in Pten-null mice. Leukemia 2011; 25: 1857–1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 2004; 18: 2747–2763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by a ‘Fondation de France’ Fellowship to MT and a grant from INCa (Institut National du Cancer: ‘Soutien à la Recherche Translationnelle 2012’) to AT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Asnafi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tesio, M., Trinquand, A., Macintyre, E. et al. Oncogenic PTEN functions and models in T-cell malignancies. Oncogene 35, 3887–3896 (2016). https://doi.org/10.1038/onc.2015.462

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.462

This article is cited by

Search

Quick links