Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Modeling the initiation of Ewing sarcoma tumorigenesis in differentiating human embryonic stem cells

Abstract

Oncogenic transformation in Ewing sarcoma tumors is driven by the fusion oncogene EWS-FLI1. However, despite the well-established role of EWS-FLI1 in tumor initiation, the development of models of Ewing sarcoma in human cells with defined genetic elements has been challenging. Here, we report a novel approach to model the initiation of Ewing sarcoma tumorigenesis that exploits the developmental and pluripotent potential of human embryonic stem cells. The inducible expression of EWS-FLI1 in embryoid bodies, or collections of differentiating stem cells, generates cells with properties of Ewing sarcoma tumors, including characteristics of transformation. These cell lines exhibit anchorage-independent growth, a lack of contact inhibition and a strong Ewing sarcoma gene expression signature. Furthermore, these cells also demonstrate a requirement for the persistent expression of EWS-FLI1 for cell survival and growth, which is a hallmark of Ewing sarcoma tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Balamuth NJ, Womer RB . Ewing's sarcoma. Lancet Oncol 2010; 11: 184–192.

    Article  CAS  PubMed  Google Scholar 

  2. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 1992; 359: 162–165.

    Article  CAS  PubMed  Google Scholar 

  3. Kinsey M, Smith R, Lessnick SL . NR0B1 is required for the oncogenic phenotype mediated by EWS/FLI in Ewing's sarcoma. Mol Cancer Res 2006; 4: 851–859.

    Article  CAS  PubMed  Google Scholar 

  4. May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O et al. Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc Natl Acad Sci USA 1993; 90: 5752–5756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Owen LA, Kowalewski AA, Lessnick SL . EWS/FLI mediates transcriptional repression via NKX2.2 during oncogenic transformation in Ewing's sarcoma. PLoS One 2008; 3: e1965.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Riggi N, Knoechel B, Gillespie SM, Rheinbay E, Boulay G, Suvà ML et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 2014; 26: 1–14.

    Article  Google Scholar 

  7. Smith R, Owen LA, Trem DJ, Wong JS, Whangbo JS, Golub TR et al. Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma. Cancer Cell 2006; 9: 405–416.

    Article  CAS  PubMed  Google Scholar 

  8. Prieur A, Tirode F, Cohen P, Delattre O . EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol Cell Biol 2004; 24: 7275–7283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chansky HA, Barahmand-Pour F, Mei Q, Kahn-Farooqi W, Zielinska-Kwiatkowska A, Blackburn M et al. Targeting of EWS/FLI-1 by RNA interference attenuates the tumor phenotype of Ewing's sarcoma cells in vitro. J Orthop Res 2004; 22: 910–917.

    Article  CAS  PubMed  Google Scholar 

  10. Kovar H, Aryee DN, Jug G, Henöckl C, Schemper M, Delattre O et al. EWS/FLI-1 antagonists induce growth inhibition of Ewing tumor cells in vitro. Cell Growth Differ 1996; 7: 429–437.

    CAS  PubMed  Google Scholar 

  11. Brohl AS, Solomon DA, Chang W, Wang J, Song Y, Sindiri S et al. The genomic landscape of the Ewing sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet 2014; 10: e1004475.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tirode F, Surdez D, Ma X, Parker M, Le Deley MC, Bahrami A et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov 2014; 4: 1342–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Crompton BD, Stewart C, Taylor-Weiner A, Alexe G, Kurek KC, Calicchio ML et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov 2014; 4: 1326–1341.

    Article  CAS  PubMed  Google Scholar 

  14. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013; 499: 214–218.

  15. Solomon DA, Kim T, Diaz-Martinez LA, Fair J, Elkahloun AG, Harris BT et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 2011; 333: 1039–1043.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ladanyi M . EWS-FLI1 and Ewing's sarcoma: recent molecular data and new insights. Cancer Biol Ther 2002; 1: 330–336.

    Article  CAS  PubMed  Google Scholar 

  17. Visvader JE . Cells of origin in cancer. Nature 2011; 469: 314–322.

    Article  CAS  PubMed  Google Scholar 

  18. Levetzow von C, Jiang X, Gwye Y, Levetzow von G, Hung L, Cooper A et al. Modeling initiation of Ewing sarcoma in human neural crest cells. PLoS One 2011; 6: e19305.

    Article  Google Scholar 

  19. Potikyan G, France KA, Carlson MRJ, Dong J, Nelson SF, Denny CT . Genetically defined EWS/FLI1 model system suggests mesenchymal origin of Ewing's family tumors. Lab Invest 2008; 88: 1291–1302.

    Article  CAS  PubMed  Google Scholar 

  20. Riggi N, Suva ML, Suva D, Cironi L, Provero P, Tercier S et al. EWS-FLI-1 expression triggers a Ewing's sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res 2008; 68: 2176–2185.

    Article  CAS  PubMed  Google Scholar 

  21. Leacock SW, Basse AN, Chandler GL, Kirk AM, Rakheja D, Amatruda JF . A zebrafish transgenic model of Ewing's sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis. Dis Model Mech 2011; 5: 95–106.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lessnick SL, Dacwag CS, Golub TR . The Ewing's sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts. Cancer Cell 2002; 1: 393–401.

    Article  CAS  PubMed  Google Scholar 

  23. Riggi N, Suva ML, De Vito C, Provero P, Stehle JC, Baumer K et al. EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells. Genes Dev 2010; 24: 916–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lessnick SL, Ladanyi M . Molecular pathogenesis of Ewing sarcoma: new therapeutic and transcriptional targets. Annu Rev Pathol Mech Dis 2012; 7: 145–159.

    Article  CAS  Google Scholar 

  25. Ganem NJ, Storchova Z, Pellman D . Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 2007; 17: 157–162.

    Article  CAS  PubMed  Google Scholar 

  26. Miyagawa Y, Okita H, Nakaijima H, Horiuchi Y, Sato B, Taguchi T et al. Inducible expression of chimeric EWS/ETS proteins confers Ewing's family tumor-like phenotypes to human mesenchymal progenitor cells. Mol Cell Biol 2008; 28: 2125–2137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Amaral AT, Manara MC, Berghuis D, Ordóñez JL, Biscuola M, Lopez-García MA et al. Characterization of human mesenchymal stem cells from ewing sarcoma patients. Pathogenetic implications. PLoS One 2014; 9: e85814.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rocchi A, Manara MC, Sciandra M, Zambelli D, Nardi F, Nicoletti G et al. CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby contributes to oncogenesis. J Clin Invest 2010; 120: 668–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Navarro S, Giraudo P, Karseladze AI, Smirnov A, Petrovichev N, Savelov N et al. Immunophenotypic profile of biomarkers related to anti-apoptotic and neural development pathways in the Ewing's family of tumors (EFT) and their therapeutic implications. Anticancer Res 2007; 27: 2457–2463.

    CAS  PubMed  Google Scholar 

  30. Scotlandi K . c-kit Receptor expression in Ewing's sarcoma: lack of prognostic value but therapeutic targeting opportunities in appropriate conditions. J Clin Oncol 2003; 21: 1952–1960.

    Article  CAS  PubMed  Google Scholar 

  31. Brenner JC, Feng FY, Han S, Patel S, Goyal SV, Bou-Maroun LM et al. PARP-1 inhibition as a targeted strategy to treat Ewing's sarcoma. Cancer Res 2012; 72: 1608–1613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012; 483: 570–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Yuan L et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma. Nat Med 2009; 15: 750–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grohar PJ, Woldemichael GM, Griffin LB, Mendoza A, Chen QR, Yeung C et al. Identification of an inhibitor of the EWS-FLI1 oncogenic transcription factor by high-throughput screening. J Natl Cancer Inst 2011; 103: 962–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Benini S, Manara MC, Cerisano V, Perdichizzi S, Strammiello R, Serra M et al. Contribution of MEK/MAPK and PI3-K signaling pathway to the malignant behavior of Ewing's sarcoma cells: therapeutic prospects. Int J Cancer 2003; 108: 358–366.

    Article  Google Scholar 

  36. Kauer M, Ban J, Kofler R, Walker B, Davis S, Meltzer P et al. A molecular function map of Ewing's sarcoma. PLoS One 2009; 4: e5415.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O . Mesenchymal stem cell features of Ewing tumors. Cancer Cell 2007; 11: 421–429.

    Article  CAS  PubMed  Google Scholar 

  38. Sanchez G, Bittencourt D, Laud K, Barbier J, Delattre O, Auboeuf D et al. Alteration of cyclin D1 transcript elongation by a mutated transcription factor up-regulates the oncogenic D1b splice isoform in cancer. Proc Natl Acad Sci USA 2008; 105: 6004–6009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wiles ET, Lui-Sargent B, Bell R, Lessnick SL . BCL11B is up-regulated by EWS/FLI and contributes to the transformed phenotype in Ewing sarcoma. PLoS One 2013; 8: e59369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Richter GHS, Plehm S, Fasan A, Rössler S, Unland R, Bennani-Baiti IM et al. EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc Natl Acad Sci USA 2009; 106: 5324–5329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lawlor ER, Lim JF, Tao W, Poremba C, Chow CJ, Kalousek IV et al. The Ewing tumor family of peripheral primitive neuroectodermal tumors expresses human gastrin-releasing peptide. Cancer Res 1998; 58: 2469–2476.

    CAS  PubMed  Google Scholar 

  42. Tilan JU, Lu C, Galli S, Izycka-Swieszewska E, Earnest JP, Shabbir A et al. Hypoxia shifts activity of neuropeptide Y in Ewing sarcoma from growth-inhibitory to growth-promoting effects. Oncotarget 2013; 4: 2487–2501.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 2013; 14: 128.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hancock JD, Lessnick SL . A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle 2008; 7: 250–256.

    Article  CAS  PubMed  Google Scholar 

  45. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483: 603–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grunewald TGP, Diebold I, Esposito I, Plehm S, Hauer K, Thiel U et al. STEAP1 is associated with the invasive and oxidative stress phenotype of Ewing tumors. Mol Cancer Res 2012; 10: 52–65.

    Article  CAS  PubMed  Google Scholar 

  48. Postel-Vinay S, Véron AS, Tirode F, Pierron G, Reynaud S, Kovar H et al. Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nat Genet 2012; 44: 323–327.

    Article  CAS  PubMed  Google Scholar 

  49. Kobayashi E, Masuda M, Nakayama R, Ichikawa H, Satow R, Shitashige M et al. Reduced argininosuccinate synthetase is a predictive biomarker for the development of pulmonary metastasis in patients with osteosarcoma. Mol Cancer Ther 2010; 9: 535–544.

    Article  CAS  PubMed  Google Scholar 

  50. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet 2013; 45: 1134–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kowal-Vern A, Walloch J, Chou P, Gonzalez-Crussi F, Price J, Potocki D et al. Flow and image cytometric DNA analysis in Ewing's sarcoma. Mod Pathol 1992; 5: 56–60.

    CAS  PubMed  Google Scholar 

  52. Roberts P, Burchill SA, Brownhill S, Cullinane CJ, Johnston C, Griffiths MJ et al. Ploidy and karyotype complexity are powerful prognostic indicators in the Ewing“s sarcoma family of tumors: a study by the United Kingdom Cancer Cytogenetics and the Children”s Cancer and Leukaemia Group. Genes Chromosomes Cancer 2008; 47: 207–220.

    Article  CAS  PubMed  Google Scholar 

  53. Maire G, Brown CW, Bayani J, Pereira C, Gravel DH, Bell JC et al. Complex rearrangement of chromosomes 19, 21, and 22 in Ewing sarcoma involving a novel reciprocal inversion-insertion mechanism of EWS-ERG fusion gene formation: a case analysis and literature review. Cancer Genet Cytogenet 2008; 181: 81–92.

    Article  CAS  PubMed  Google Scholar 

  54. Ganem NJ, Cornils H, Chiu S-Y, O'Rourke KP, Arnaud J, Yimlamai D et al. Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 2014; 158: 833–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Williams SA, Anderson WC, Santaguida MT, Dylla SJ . Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. Lab Invest 2013; 93: 970–982.

    Article  PubMed  Google Scholar 

  56. Kowalewski AA, Randall RL, Lessnick SL . Cell cycle deregulation in Ewing's sarcoma pathogenesis. Sarcoma 2011; 2011: 598704.

    Article  PubMed  Google Scholar 

  57. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhu H, Shyh-Chang N, Segrè AV, Shinoda G, Shah SP, Einhorn WS et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 2011; 147: 81–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Vito C, Riggi N, Suvà M-L, Janiszewska M, Horlbeck J, Baumer K et al. Let-7a is a direct EWS-FLI-1 target implicated in Ewing's sarcoma development. PLoS One 2011; 6: e23592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hulsen T, de Vlieg J, Alkema W . BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 2008; 9: 488.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Hubo Li for helpful discussions and Kelli Goss for assistance with the drug dose-response experiments. DJG is supported by a NCI K08 award (5K08 CA160346-03), a CureSearch Award and a Sarcoma Foundation of America Award. DP is a HHMI investigator and supported by NIH grant GM083299.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D J Gordon or D Pellman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordon, D., Motwani, M. & Pellman, D. Modeling the initiation of Ewing sarcoma tumorigenesis in differentiating human embryonic stem cells. Oncogene 35, 3092–3102 (2016). https://doi.org/10.1038/onc.2015.368

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.368

This article is cited by

Search

Quick links