Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

IFNγ induces oxidative stress, DNA damage and tumor cell senescence via TGFβ/SMAD signaling-dependent induction of Nox4 and suppression of ANT2

Subjects

Abstract

Cellular senescence provides a biological barrier against tumor progression, often associated with oncogene-induced replication and/or oxidative stress, cytokine production and DNA damage response (DDR), leading to persistent cell-cycle arrest. While cytokines such as tumor necrosis factor-alpha (TNFα) and interferon gamma (IFNγ) are important components of senescence-associated secretome and induce senescence in, for example, mouse pancreatic β-cancer cell model, their downstream signaling pathway(s) and links with oxidative stress and DDR are mechanistically unclear. Using human and mouse normal and cancer cell models, we now show that TNFα and IFNγ induce NADPH oxidases Nox4 and Nox1, reactive oxygen species (ROS), DDR signaling and premature senescence. Unlike mouse tumor cells that required concomitant presence of IFNγ and TNFα, short exposure to IFNγ alone was sufficient to induce Nox4, Nox1 and DDR in human cells. siRNA-mediated knockdown of Nox4 but not Nox1 decreased IFNγ-induced DDR. The expression of Nox4/Nox1 required Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling and the effect was mediated by downstream activation of transforming growth factor-beta (TGFβ) secretion and consequent autocrine/paracrine activation of the TGFβ/Smad pathway. Furthermore, the expression of adenine nucleotide translocase 2 (ANT2) was suppressed by IFNγ contributing to elevation of ROS and DNA damage. In contrast to mouse B16 cells, inability of TC-1 cells to respond to IFNγ/TNFα by DDR and senescence correlated with the lack of TGFβ and Nox4 response, supporting the role of ROS induced by NADPH oxidases in cytokine-induced senescence. Overall, our data reveal differences between cytokine effects in mouse and human cells, and mechanistically implicate the TGFβ/SMAD pathway, via induction of NADPH oxidases and suppression of ANT2, as key mediators of IFNγ/TNFα-evoked genotoxicity and cellular senescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

ANT2:

adenine nucleotide translocase 2

DDR:

DNA damage response

IFN:

interferon

IL:

interleukin

JAK:

Janus kinase

PML:

promyelocytic leukemia protein

ROS:

reactive oxygen species

SA-β-gal:

senescence-associated beta-galactosidase

STAT:

signal transducers and activators of transcription

TGFβ:

transforming growth factor-beta

TNFα:

tumor necrosis factor alpha.

References

  1. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011; 479: 232–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006; 444: 633–637.

    Article  CAS  PubMed  Google Scholar 

  3. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444: 638–642.

    Article  CAS  PubMed  Google Scholar 

  4. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AHFM, Schlegelberger B et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 2005; 436: 660–665.

    CAS  PubMed  Google Scholar 

  5. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. Tumour biology: Senescence in premalignant tumours. Nature 2005; 436: 642.

    CAS  PubMed  Google Scholar 

  6. Chen Z, Trotman LC, Shaffer D, Lin H-K, Dotan ZA, Niki M et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005; 436: 725–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Michaloglou C, Vredeveld LCW, Soengas MS, Denoyelle C, Kuilman T, van der Horst CMAM et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005; 436: 720–724.

    CAS  PubMed  Google Scholar 

  8. Takacova S, Slany R, Bartkova J, Stranecky V, Dolezel P, Luzna P et al. DNA damage response and inflammatory signaling limit the MLL-ENL-induced leukemogenesis in vivo. Cancer Cell 2012; 21: 517–531.

    CAS  PubMed  Google Scholar 

  9. Yang KE, Kwon J, Rhim JH, Choi JS, Kim SI, Lee SH et al. Differential expression of extracellular matrix proteins in senescent and young human fibroblasts: a comparative proteomics and microarray study. Mol Cell 2011; 32: 99–106.

    CAS  Google Scholar 

  10. Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008; 133: 1006–1018.

    Article  CAS  PubMed  Google Scholar 

  11. Coppe JP, Kauser K, Campisi J, Beausejour CM . Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J Biol Chem 2006; 281: 29568–29574.

    CAS  PubMed  Google Scholar 

  12. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008; 133: 1019–1031.

    CAS  PubMed  Google Scholar 

  13. Maier JA, Voulalas P, Roeder D, Maciag T . Extension of the life-span of human endothelial cells by an interleukin-1 alpha antisense oligomer. Science 1990; 249: 1570–1574.

    CAS  PubMed  Google Scholar 

  14. Minamino T, Yoshida T, Tateno K, Miyauchi H, Zou Y, Toko H et al. Ras induces vascular smooth muscle cell senescence and inflammation in human atherosclerosis. Circulation 2003; 108: 2264–2269.

    CAS  PubMed  Google Scholar 

  15. Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 2009; 11: 973–979.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008; 6: 2853–2868.

    CAS  PubMed  Google Scholar 

  17. Coppe JP, Desprez PY, Krtolica A, Campisi J . The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010; 5: 99–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Laberge RM, Awad P, Campisi J, Desprez PY . Epithelial-mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron 2012; 5: 39–44.

    CAS  PubMed  Google Scholar 

  19. Rajagopalan S, Long EO . Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc Natl Acad Sci USA 2012; 109: 20596–20601.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C et al. Senescence of activated stellate cells limits liver fibrosis. Cell 2008; 134: 657–667.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445: 656–660.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 2013; 15: 978–990.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Di X, Bright AT, Bellott R, Gaskins E, Robert J, Holt S et al. A chemotherapy-associated senescence bystander effect in breast cancer cells. Cancer Biol Ther 2008; 7: 864–872.

    CAS  PubMed  Google Scholar 

  24. Hubackova S, Krejcikova K, Bartek J, Hodny Z . IL1- and TGFbeta-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine ‘Bystander senescence’. Aging (Albany NY) 2012; 4: 932–951.

    CAS  Google Scholar 

  25. Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell 2012; 11: 345–349.

    CAS  PubMed  Google Scholar 

  26. Davalos AR, Coppe JP, Campisi J, Desprez PY . Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev 2010; 29: 273–283.

    PubMed  PubMed Central  Google Scholar 

  27. Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011; 479: 547–551.

    CAS  PubMed  Google Scholar 

  28. Sagiv A, Biran A, Yon M, Simon J, Lowe SW, Krizhanovsky V . Granule exocytosis mediates immune surveillance of senescent cells. Oncogene 2013; 32: 1971–1977.

    CAS  PubMed  Google Scholar 

  29. Braumuller H, Wieder T, Brenner E, Assmann S, Hahn M, Alkhaled M et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 2013; 494: 361–365.

    PubMed  Google Scholar 

  30. Chiantore MV, Vannucchi S, Accardi R, Tommasino M, Percario ZA, Vaccari G et al. Interferon-beta induces cellular senescence in cutaneous human papilloma virus-transformed human keratinocytes by affecting p53 transactivating activity. PLoS One 2012; 7: e36909.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaynor C, Xin M, Wakefield J, Barsoum J, Qin XQ . Direct evidence that IFN-beta functions as a tumor-suppressor protein. J Interferon Cytokine Res 2002; 22: 1089–1098.

    CAS  PubMed  Google Scholar 

  32. Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G . DNA damage signaling and p53-dependent senescence after prolonged {beta}-interferon stimulation. Mol Biol Cell 2006; 17: 1583–1592.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim KS, Kang KW, Seu YB, Baek SH, Kim JR . Interferon-gamma induces cellular senescence through p53-dependent DNA damage signaling in human endothelial cells. Mech Ageing Dev 2009; 130: 179–188.

    CAS  PubMed  Google Scholar 

  34. Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN . Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 1995; 92: 4337–4341.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Panieri E, Gogvadze V, Norberg E, Venkatesh R, Orrenius S, Zhivotovsky B . Reactive oxygen species generated in different compartments induce cell death, survival, or senescence. Free Radic Biol Med 2013; 57: 176–187.

    CAS  PubMed  Google Scholar 

  36. von Zglinicki T, Saretzki G, Docke W, Lotze C . Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 1995; 220: 186–193.

    CAS  PubMed  Google Scholar 

  37. Koziel R, Pircher H, Kratochwil M, Lener B, Hermann M, Dencher NA et al. Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox4. Biochem J 2013; 452: 231–239.

    CAS  PubMed  Google Scholar 

  38. Lener B, Koziel R, Pircher H, Hutter E, Greussing R, Herndler-Brandstetter D et al. The NADPH oxidase Nox4 restricts the replicative lifespan of human endothelial cells. Biochem J 2009; 423: 363–374.

    CAS  PubMed  Google Scholar 

  39. Ogrunc M, Di Micco R, Liontos M, Bombardelli L, Mione M, Fumagalli M et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ 2014; 21: 998–1012.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Weyemi U, Lagente-Chevallier O, Boufraqech M, Prenois F, Courtin F, Caillou B et al. ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 2012; 31: 1117–1129.

    CAS  PubMed  Google Scholar 

  41. Kodama R, Kato M, Furuta S, Ueno S, Zhang Y, Matsuno K et al. ROS-generating oxidases Nox1 and Nox4 contribute to oncogenic Ras-induced premature senescence. Genes Cells 2013; 18: 32–41.

    CAS  PubMed  Google Scholar 

  42. Maghzal GJ, Krause KH, Stocker R, Jaquet V . Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic Biol Med 2012; 53: 1903–1918.

    CAS  PubMed  Google Scholar 

  43. Bedard K, Krause KH . The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245–313.

    CAS  PubMed  Google Scholar 

  44. Geiszt M . NADPH oxidases: new kids on the block. Cardiovasc Res 2006; 71: 289–299.

    CAS  PubMed  Google Scholar 

  45. Altenhofer S, Kleikers PW, Radermacher KA, Scheurer P, Rob Hermans JJ, Schiffers P et al. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell Mol Life Sci 2012; 69: 2327–2343.

    PubMed  PubMed Central  Google Scholar 

  46. Munoz-Espin D, Serrano M . Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 2014; 15: 482–496.

    CAS  PubMed  Google Scholar 

  47. Schultz LB, Chehab NH, Malikzay A, Halazonetis TD . p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol 2000; 151: 1381–1390.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shuai K, Stark GR, Kerr IM, Darnell JE Jr . A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 1993; 261: 1744–1746.

    CAS  PubMed  Google Scholar 

  49. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273: 5858–5868.

    CAS  PubMed  Google Scholar 

  50. Stadler M, Chelbi-Alix MK, Koken MH, Venturini L, Lee C, Saib A et al. Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 1995; 11: 2565–2573.

    CAS  PubMed  Google Scholar 

  51. Manea A, Tanase LI, Raicu M, Simionescu M . Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 2010; 30: 105–112.

    CAS  PubMed  Google Scholar 

  52. Barath P, Luciakova K, Hodny Z, Li R, Nelson BD . The growth-dependent expression of the adenine nucleotide translocase-2 (ANT2) gene is regulated at the level of transcription and is a marker of cell proliferation. Exp Cell Res 1999; 248: 583–588.

    CAS  PubMed  Google Scholar 

  53. Luciakova K, Kollarovic G, Barath P, Nelson BD . Growth-dependent repression of human adenine nucleotide translocator-2 (ANT2) transcription: evidence for the participation of Smad and Sp family proteins in the NF1-dependent repressor complex. Biochem J 2008; 412: 123–130.

    CAS  PubMed  Google Scholar 

  54. Luciakova K, Kollarovic G, Kretova M, Sabova L, Nelson BD . TGF-beta signals the formation of a unique NF1/Smad4-dependent transcription repressor-complex in human diploid fibroblasts. Biochem Biophys Res Commun 2011; 411: 648–653.

    CAS  PubMed  Google Scholar 

  55. Kretova M, Sabova L, Hodny Z, Bartek J, Kollarovic G, Nelson BD et al. TGF-β/NF1/Smad4-mediated suppression of ANT2 contributes to oxidative stress in cellular senescence. Cell Signal 2014; 26: 2903–2911.

    CAS  PubMed  Google Scholar 

  56. Kim HS, Je JH, Son TG, Park HR, Ji ST, Pokharel YR et al. The hepatoprotective effects of adenine nucleotide translocator-2 against aging and oxidative stress. Free Radic Res 2012; 46: 21–29.

    PubMed  Google Scholar 

  57. Lena A, Rechichi M, Salvetti A, Vecchio D, Evangelista M, Rainaldi G et al. The silencing of adenine nucleotide translocase isoform 1 induces oxidative stress and programmed cell death in ADF human glioblastoma cells. FEBS J 2010; 277: 2853–2867.

    CAS  PubMed  Google Scholar 

  58. Besancenot R, Chaligne R, Tonetti C, Pasquier F, Marty C, Lecluse Y et al. A senescence-like cell-cycle arrest occurs during megakaryocytic maturation: implications for physiological and pathological megakaryocytic proliferation. PLoS Biol 2010; 8: e1000476.

    PubMed  PubMed Central  Google Scholar 

  59. Fazeli G, Stopper H, Schinzel R, Ni CW, Jo H, Schupp N . Angiotensin II induces DNA damage via AT1 receptor and NADPH oxidase isoform Nox4. Mutagenesis 2012; 27: 673–681.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Coppe JP, Patil CK, Rodier F, Krtolica A, Beausejour CM, Parrinello S et al. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One 2010; 5: e9188.

    PubMed  PubMed Central  Google Scholar 

  61. Bartek J, Hodny Z, Lukas J . Cytokine loops driving senescence. Nat Cell Biol 2008; 10: 887–889.

    CAS  PubMed  Google Scholar 

  62. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–870.

    CAS  PubMed  Google Scholar 

  63. Evangelou K, Bartkova J, Kotsinas A, Pateras IS, Liontos M, Velimezi G et al. The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis. Cell Death Differ 2013; 20: 1485–1497.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Halazonetis TD, Gorgoulis VG, Bartek J . An oncogene-induced DNA damage model for cancer development. Science 2008; 319: 1352–1355.

    CAS  PubMed  Google Scholar 

  65. Adachi Y, Shibai Y, Mitsushita J, Shang WH, Hirose K, Kamata T . Oncogenic Ras upregulates NADPH oxidase 1 gene expression through MEK-ERK-dependent phosphorylation of GATA-6. Oncogene 2008; 27: 4921–4932.

    CAS  PubMed  Google Scholar 

  66. Manea A, Tanase LI, Raicu M, Simionescu M . Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-kappaB in human aortic smooth muscle cells. Biochem Biophys Res Commun 2010; 396: 901–907.

    CAS  PubMed  Google Scholar 

  67. Boudreau HE, Casterline BW, Rada B, Korzeniowska A, Leto TL . Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells. Free Radic Biol Med 2012; 53: 1489–1499.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Caja L, Sancho P, Bertran E, Iglesias-Serret D, Gil J, Fabregat I . Overactivation of the MEK/ERK pathway in liver tumor cells confers resistance to TGF-{beta}-induced cell death through impairing up-regulation of the NADPH oxidase NOX4. Cancer Res 2009; 69: 7595–7602.

    CAS  PubMed  Google Scholar 

  69. Carmona-Cuenca I, Roncero C, Sancho P, Caja L, Fausto N, Fernandez M et al. Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity. J Hepatol 2008; 49: 965–976.

    CAS  PubMed  Google Scholar 

  70. Hiraga R, Kato M, Miyagawa S, Kamata T . Nox4-derived ROS signaling contributes to TGF-beta-induced epithelial-mesenchymal transition in pancreatic cancer cells. Anticancer Res 2013; 33: 4431–4438.

    CAS  PubMed  Google Scholar 

  71. Hu T, Ramachandrarao SP, Siva S, Valancius C, Zhu Y, Mahadev K et al. Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. Am J Physiol Renal Physiol 2005; 289: F816–F825.

    CAS  PubMed  Google Scholar 

  72. Michaeloudes C, Sukkar MB, Khorasani NM, Bhavsar PK, Chung KF . TGF-beta regulates Nox4, MnSOD and catalase expression, and IL-6 release in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2011; 300: L295–L304.

    CAS  PubMed  Google Scholar 

  73. Sturrock A, Cahill B, Norman K, Huecksteadt TP, Hill K, Sanders K et al. Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2006; 290: L661–L673.

    CAS  PubMed  Google Scholar 

  74. Chiera F, Meccia E, Degan P, Aquilina G, Pietraforte D, Minetti M et al. Overexpression of human NOX1 complex induces genome instability in mammalian cells. Free Radic Biol Med 2008; 44: 332–342.

    CAS  PubMed  Google Scholar 

  75. Boulanger CA, Smith GH . Reducing mammary cancer risk through premature stem cell senescence. Oncogene 2001; 20: 2264–2272.

    CAS  PubMed  Google Scholar 

  76. Frippiat C, Chen QM, Zdanov S, Magalhaes JP, Remacle J, Toussaint O . Subcytotoxic H2O2 stress triggers a release of transforming growth factor-beta 1, which induces biomarkers of cellular senescence of human diploid fibroblasts. J Biol Chem 2001; 276: 2531–2537.

    CAS  PubMed  Google Scholar 

  77. Chainiaux F, Remacle J, Toussaint O . Exposure of human skin diploid fibroblasts to repeated subcytotoxic doses of ultraviolet-B induces the overexpression of transforming growth factor-beta1 mRNA. Ann NY Acad Sci 2002; 973: 44–48.

    CAS  PubMed  Google Scholar 

  78. Katakura Y, Nakata E, Miura T, Shirahata S . Transforming growth factor [beta] triggers two independent-senescence programs in cancer cells. Biochem Biophys Res Commun 1999; 255: 110–115.

    CAS  PubMed  Google Scholar 

  79. Katakura Y, Nakata E, Tabira Y, Miura T, Teruya K, Tsuchiya T et al. Decreased tumorigenicity in vivo when transforming growth factor beta treatment causes cancer cell senescence. Biosci Biotechnol Biochem 2003; 67: 815–821.

    CAS  PubMed  Google Scholar 

  80. Kordon EC, McKnight RA, Jhappan C, Hennighausen L, Merlino G, Smith GH . Ectopic TGF beta 1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol 1995; 168: 47–61.

    CAS  PubMed  Google Scholar 

  81. Tremain R, Marko M, Kinnimulki V, Ueno H, Bottinger E, Glick A . Defects in TGF-beta signaling overcome senescence of mouse keratinocytes expressing v-Ha-ras. Oncogene 2000; 19: 1698–1709.

    CAS  PubMed  Google Scholar 

  82. Ding G, Franki N, Kapasi AA, Reddy K, Gibbons N, Singhal PC . Tubular cell senescence and expression of TGF-beta1 and p21(WAF1/CIP1) in tubulointerstitial fibrosis of aging rats. Exp Mol Pathol 2001; 70: 43–53.

    CAS  PubMed  Google Scholar 

  83. Yoon G, Kim HJ, Yoon YS, Cho H, Lim IK, Lee JH . Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem J 2002; 366: 613–621.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Siegel PM, Massague J . Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003; 3: 807–821.

    CAS  PubMed  Google Scholar 

  85. Ulloa L, Doody J, Massague J . Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 1999; 397: 710–713.

    CAS  PubMed  Google Scholar 

  86. Nagineni CN, Cherukuri KS, Kutty V, Detrick B, Hooks JJ . Interferon-gamma differentially regulates TGF-beta1 and TGF-beta2 expression in human retinal pigment epithelial cells through JAK-STAT pathway. J Cell Physiol 2007; 210: 192–200.

    CAS  PubMed  Google Scholar 

  87. Harris JE, Fernandez-Vilaseca M, Elkington PT, Horncastle DE, Graeber MB, Friedland JS . IFNgamma synergizes with IL-1beta to up-regulate MMP-9 secretion in a cellular model of central nervous system tuberculosis. FASEB J 2007; 21: 356–365.

    CAS  PubMed  Google Scholar 

  88. Yu Q, Stamenkovic I . Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 2000; 14: 163–176.

    PubMed  PubMed Central  Google Scholar 

  89. Luciakova K, Barath P, Poliakova D, Persson A, Nelson BD . Repression of the human adenine nucleotide translocase-2 gene in growth-arrested human diploid cells: the role of nuclear factor-1. J Biol Chem 2003; 278: 30624–30633.

    CAS  PubMed  Google Scholar 

  90. Wieder T, Braumuller H, Brenner E, Zender L, Rocken M . Changing T-cell enigma: cancer killing or cancer control? Cell Cycle 2013; 12: 3146–3153.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Derynck R, Zhang YE . Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425: 577–584.

    CAS  PubMed  Google Scholar 

  92. Xu P, Liu J, Derynck R . Post-translational regulation of TGF-beta receptor and Smad signaling. FEBS Lett 2012; 586: 1871–1884.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Vlasakova J, Novakova Z, Rossmeislova L, Kahle M, Hozak P, Hodny Z . Histone deacetylase inhibitors suppress IFN{alpha}-induced up-regulation of promyelocytic leukemia protein. Blood 2007; 109: 1373–1380.

    CAS  PubMed  Google Scholar 

  94. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    CAS  PubMed  Google Scholar 

  95. Aarden LA . Hybridoma growth factor. Ann NY Acad Sci 1989; 557: 192–198, discussion 198-199.

    CAS  PubMed  Google Scholar 

  96. Hubackova S, Krejcikova K, Bartek J, Hodny Z . Interleukin 6 signaling regulates promyelocytic leukemia protein gene expression in human normal and cancer cells. J Biol Chem 2012; 287: 26702–26714.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Novakova Z, Hubackova S, Kosar M, Janderova-Rossmeislova L, Dobrovolna J, Vasicova P et al. Cytokine expression and signaling in drug-induced cellular senescence. Oncogene 2010; 29: 273–284.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Marketa Vancurova and Katerina Krejcikova for excellent technical assistance. This study was supported by the Grant Agency of the Czech Republic (Project 13-17658S), NT14461 grant from the Grant Agency of the Ministry of Health of the Czech Republic and Institutional Grant (Project RVO 68378050). SH was supported by Academy of Sciences of the Czech Republic (Project L200521301), LK was supported in part by the Faculty of Science, Charles University, Prague.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Bartek or Z Hodny.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Disclaimer

We confirm that the data presented in the manuscript are novel, they have not been published or are not under consideration for publication elsewhere.

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubackova, S., Kucerova, A., Michlits, G. et al. IFNγ induces oxidative stress, DNA damage and tumor cell senescence via TGFβ/SMAD signaling-dependent induction of Nox4 and suppression of ANT2. Oncogene 35, 1236–1249 (2016). https://doi.org/10.1038/onc.2015.162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.162

This article is cited by

Search

Quick links