Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A positive role of DBC1 in PEA3-mediated progression of estrogen receptor-negative breast cancer

Subjects

Abstract

Deleted in Breast Cancer 1 (DBC1), a negative regulator of deacetylase SIRT1, has been shown to act as an estrogen receptor α (ER) coactivator that has a key role in ER transcription complex assembly and estrogen-dependent breast cancer cell proliferation. However, little is known about its physiological role and mechanism of action in ER-negative breast cancer cells. Here we report that DBC1 functions as a coactivator for the oncogenic ETS transcription factor PEA3 to promote ER-negative breast cancer progression. DBC1 is required for the expression of PEA3 target genes and for recruitment of PEA3 and RNA polymerase II to PEA3 target promoters. We also demonstrated that acetylation of PEA3 stimulates its DNA binding and association with DBC1 by disrupting the intramolecular interaction of PEA3. The molecular mechanism underlying DBC1 function in PEA3-mediated transcription involves inhibition of SIRT1 interaction with PEA3 and of SIRT1-mediated deacetylation of PEA3. Moreover, DBC1 depletion inhibited the tumorigenic properties of ER-negative breast cancer cells in vitro and in vivo. Importantly, increased DBC1 expression correlated with shorter relapse-free survival of ER-negative breast cancer patients. Our results firmly established DBC1 as a critical coactivator of PEA3 and as a key player in PEA3-mediated breast cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Reis-Filho JS, Pusztai L . Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 2011; 378: 1812–1823.

    Article  CAS  PubMed  Google Scholar 

  3. Barcellos-Hoff MH . Does microenvironment contribute to the etiology of estrogen receptor-negative breast cancer? Clin Cancer Res 2013; 19: 541–548.

    Article  CAS  PubMed  Google Scholar 

  4. Hynes NE, Lane HA . ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005; 5: 341–354.

    Article  CAS  PubMed  Google Scholar 

  5. Sharrocks AD . The ETS-domain transcription factor family. Nat Rev Mol Cell Biol 2001; 2: 827–837.

    Article  CAS  PubMed  Google Scholar 

  6. Oh S, Shin S, Janknecht R . ETV1 4 and 5: an oncogenic subfamily of ETS transcription factors. Biochim Biophys Acta 2012; 1826: 1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Myers E, Hill AD, Kelly G, McDermott EW, O'Higgins NJ, Young LS . A positive role for PEA3 in HER2-mediated breast tumour progression. Br J Cancer 2006; 95: 1404–1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Benz CC, O'Hagan RC, Richter B, Scott GK, Chang CH, Xiong X et al. HER2/Neu and the Ets transcription activator PEA3 are coordinately upregulated in human breast cancer. Oncogene 1997; 15: 1513–1525.

    Article  CAS  PubMed  Google Scholar 

  9. O'Hagan RC, Tozer RG, Symons M, McCormick F, Hassell JA . The activity of the Ets transcription factor PEA3 is regulated by two distinct MAPK cascades. Oncogene 1996; 13: 1323–1333.

    CAS  PubMed  Google Scholar 

  10. Guo B, Panagiotaki N, Warwood S, Sharrocks AD . Dynamic modification of the ETS transcription factor PEA3 by sumoylation and p300-mediated acetylation. Nucleic Acids Res 2011; 39: 6403–6413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu EJ, Kim SH, Heo K, Ou CY, Stallcup MR, Kim JH . Reciprocal roles of DBC1 and SIRT1 in regulating estrogen receptor α activity and co-activator synergy. Nucleic Acids Res 2011; 39: 6932–6943.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao W, Kruse JP, Tang Y, Jung SY, Qin J, Gu W . Negative regulation of the deacetylase SIRT1 by DBC1. Nature 2008; 451: 587–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim JE, Chen J, Lou Z . DBC1 is a negative regulator of SIRT1. Nature 2008; 451: 583–586.

    Article  CAS  PubMed  Google Scholar 

  14. Fu J, Jiang J, Li J, Wang S, Shi G, Feng Q et al. Deleted in breast cancer 1, a novel androgen receptor (AR) coactivator that promotes AR DNA-binding activity. J Biol Chem 2009; 284: 6832–6840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chini CC, Escande C, Nin V, Chini EN . HDAC3 is negatively regulated by the nuclear protein DBC1. J Biol Chem 2010; 285: 40830–40837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gu S, Chen L, Hong Q, Yan T, Zhuang Z, Wang Q et al. PEA3 activates CXCR4 transcription in MDA-MB-231 and MCF7 breast cancer cells. Acta Biochim Biophys Sin 2011; 43: 771–778.

    Article  CAS  PubMed  Google Scholar 

  17. Sun Y, Wenger L, Brinckerhoff CE, Misra RR, Cheung HS . Basic calcium phosphate crystals induce matrix metalloproteinase-1 through the Ras/mitogen-activated protein kinase/c-Fos/AP-1/metalloproteinase 1 pathway. Involvement of transcription factor binding sites AP-1 and PEA-3. J Biol Chem 2002; 277: 1544–1552.

    Article  CAS  PubMed  Google Scholar 

  18. Wollenick K, Hu J, Kristiansen G, Schraml P, Rehrauer H, Berchner-Pfannschmidt U et al. Synthetic transactivation screening reveals ETV4 as broad coactivator of hypoxia-inducible factor signaling. Nucleic Acids Res 2012; 40: 1928–1943.

    Article  CAS  PubMed  Google Scholar 

  19. Bohn OL, Nasir I, Brufsky A, Tseng GC, Bhargava R, MacManus K et al. Biomarker profile in breast carcinomas presenting with bone metastasis. Int J Clin Exp Pathol 2009; 3: 139–146.

    PubMed  PubMed Central  Google Scholar 

  20. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3: 537–549.

    Article  CAS  PubMed  Google Scholar 

  21. Shepherd TG, Kockeritz L, Szrajber MR, Muller WJ, Hassell JA . The pea3 subfamily ets genes are required for HER2/Neu-mediated mammary oncogenesis. Curr Biol 2001; 11: 1739–1748.

    Article  CAS  PubMed  Google Scholar 

  22. Neumann H, Hancock SM, Buning R, Routh A, Chapman L, Somers J et al. A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 2009; 36: 153–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Greenall A, Willingham N, Cheung E, Boam DS, Sharrocks AD . DNA binding by the ETS-domain transcription factor PEA3 is regulated by intramolecular and intermolecular protein.protein interactions. J Biol Chem 2001; 276: 16207–16215.

    Article  CAS  PubMed  Google Scholar 

  24. Bojovic BB, Hassell JA . The PEA3 Ets transcription factor comprises multiple domains that regulate transactivation and DNA binding. J Biol Chem 2001; 276: 4509–4521.

    Article  CAS  PubMed  Google Scholar 

  25. Gu W, Roeder RG . Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 1997; 90: 595–606.

    Article  CAS  PubMed  Google Scholar 

  26. Guo B, Sharrocks AD . Extracellular signal-regulated kinase mitogen-activated protein kinase signaling initiates a dynamic interplay between sumoylation and ubiquitination to regulate the activity of the transcriptional activator PEA3. Mol Cell Biol 2009; 29: 3204–3218.

    Article  CAS  PubMed  Google Scholar 

  27. Baert JL, Monte D, Musgrove EA, Albagli O, Sutherland RL, de Launoit Y . Expression of the PEA3 group of ETS-related transcription factors in human breast-cancer cells. Int J Cancer 1997; 70: 590–597.

    Article  CAS  PubMed  Google Scholar 

  28. Goel A, Janknecht R . Acetylation-mediated transcriptional activation of the ETS protein ER81 by p300, P/CAF, and HER2/Neu. Mol Cell Biol 2003; 23: 6243–6254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee H, Kim KR, Noh SJ, Park HS, Kwon KS, Park BH et al. Expression of DBC1 and SIRT1 is associated with poor prognosis for breast carcinoma. Hum Pathol 2011; 42: 204–213.

    Article  CAS  PubMed  Google Scholar 

  30. Hiraike H, Wada-Hiraike O, Nakagawa S, Saji S, Maeda D, Miyamoto Y et al. Expression of DBC1 is associated with nuclear grade and HER2 expression in breast cancer. Exp Ther Med 2011; 2: 1105–1109.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Eck SM, Cote AL, Winkelman WD, Brinckerhoff CE . CXCR4 and matrix metalloproteinase-1 are elevated in breast carcinoma-associated fibroblasts and in normal mammary fibroblasts exposed to factors secreted by breast cancer cells. Mol Cancer Res 2009; 7: 1033–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cojoc M, Peitzsch C, Trautmann F, Polishchuk L, Telegeev GD, Dubrovska A . Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets Ther 2013; 6: 1347–1361.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Seo WY, Jeong BC, Yu EJ, Kim HJ, Kim SH, Lim JE et al. CCAR1 promotes chromatin loading of androgen receptor (AR) transcription complex by stabilizing the association between AR and GATA2. Nucleic Acids Res 2013; 41: 8526–8536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim JH, Yang CK, Heo K, Roeder RG, An W, Stallcup MR . CCAR1, a key regulator of mediator complex recruitment to nuclear receptor transcription complexes. Mol Cell 2008; 31: 510–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu EJ, Kim SH, Kim MJ, Seo WY, Song KA, Kang MS et al. SUMOylation of ZFP282 potentiates its positive effect on estrogen signaling in breast tumorigenesis. Oncogene 2013; 32: 4160–4168.

    Article  CAS  PubMed  Google Scholar 

  36. Choi YL, Oh E, Park S, Kim Y, Park YH, Song K et al. Triple-negative, basal-like, and quintuple-negative breast cancers: better prediction model for survival. BMC Cancer 2010; 10: 507.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim SH, Kim JH, Yu EJ, Lee KW, Park CK . The overexpression of DBC1 in esophageal squamous cell carcinoma correlates with poor prognosis. Histol Histopathol 2012; 27: 49–58.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jason W Chin (MRC Laboratory for Molecular Biology, Cambridge, UK) for providing vectors and Yoon-La Choi (Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea) for providing the tissue microarray slides of primary invasive breast carcinoma specimens. This work was supported by Samsung Biomedical Research Institute (SBRI) grant (SMX1132501) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2013R1A1A2059697) to JHK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J H Kim.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Kim, SH., Yu, E. et al. A positive role of DBC1 in PEA3-mediated progression of estrogen receptor-negative breast cancer. Oncogene 34, 4500–4508 (2015). https://doi.org/10.1038/onc.2014.381

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.381

This article is cited by

Search

Quick links