Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SYK interaction with ITGβ4 suppressed by Epstein-Barr virus LMP2A modulates migration and invasion of nasopharyngeal carcinoma cells

Subjects

Abstract

Epstein-Barr virus (EBV)-encoded Latent Membrane Protein 2A (LMP2A) is an EBV latency-associated protein regularly expressed in nasopharyngeal carcinoma (NPC). In B cells, LMP2A activity resembles that of a constitutively activated antigen receptor, which recruits the Syk tyrosine kinase to activate a set of downstream signaling pathways. LMP2A also downregulates cellular Syk levels. In the present study, we demonstrate that Syk interacts with the integrin β4 subunit (ITGβ4) of integrin α6β4 in epithelial cells and that concurrent LMP2A expression interferes with this interaction by competitive binding to Syk. We find that both Syk and LMP2A have an effect on ITGβ4 cell surface expression. However, in LMP2A expressing cells, ITGβ4 remains concentrated at the cellular protrusions, an expression pattern characteristic of motile cells, including NPC-derived epithelial cells. This effect of LMP2A on ITGβ4 localization is associated with a greater propensity for migration and invasion in-vitro, and may contribute to the invasive property of LMP2A-expressing NPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Busson P, McCoy R, Sadler R, Gilligan K, Tursz T, Raab-Traub N . Consistent transcription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. J Virol 1992; 66: 3257–3262.

    CAS  PubMed  Google Scholar 

  2. Heussinger N, Buttner M, Ott G, Brachtel E, Pilch BZ, Kremmer E et al. Expression of the Epstein-Barr virus (EBV)-encoded latent membrane protein 2A (LMP2A) in EBV-associated nasopharyngeal carcinoma. J Pathol 2004; 203: 696–699.

    Article  CAS  Google Scholar 

  3. Kong QL, Hu LJ, Cao JY, Huang YJ, Xu LH, Liang Y et al. Epstein-Barr virus-encoded LMP2A induces an epithelial-mesenchymal transition and increases the number of side population stem-like cancer cells in nasopharyngeal carcinoma. PLoS Pathog 2010; 6: e1000940.

    Article  Google Scholar 

  4. Fruehling S, Longnecker R . The immunoreceptor tyrosine-based activation motif of Epstein-Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology 1997; 235: 241–251.

    Article  CAS  Google Scholar 

  5. Scholle F, Bendt KM, Raab-Traub N . Epstein-Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J Virol 2000; 74: 10681–10689.

    Article  CAS  Google Scholar 

  6. Lu J, Lin WH, Chen SY, Longnecker R, Tsai SC, Chen CL et al. Syk tyrosine kinase mediates Epstein-Barr virus latent membrane protein 2A-induced cell migration in epithelial cells. J Biol Chem 2006; 281: 8806–8814.

    Article  CAS  Google Scholar 

  7. Pegtel DM, Subramanian A, Sheen TS, Tsai CH, Golub TR, Thorley-Lawson DA . Epstein-Barr-virus-encoded LMP2A induces primary epithelial cell migration and invasion: possible role in nasopharyngeal carcinoma metastasis. J Virol 2005; 79: 15430–15442.

    Article  CAS  Google Scholar 

  8. Allen MD, Young LS, Dawson CW . The Epstein-Barr virus-encoded LMP2A and LMP2B proteins promote epithelial cell spreading and motility. J Virol 2005; 79: 1789–1802.

    Article  CAS  Google Scholar 

  9. Matskova LV, Helmstetter C, Ingham RJ, Gish G, Lindholm CK, Ernberg I et al. The Shb signalling scaffold binds to and regulates constitutive signals from the Epstein-Barr virus LMP2A membrane protein. Oncogene 2007; 26: 4908–4917.

    Article  CAS  Google Scholar 

  10. Matskova L, Ernberg I, Pawson T, Winberg G . C-terminal domain of the Epstein-Barr virus LMP2A membrane protein contains a clustering signal. J Virol 2001; 75: 10941–10949.

    Article  CAS  Google Scholar 

  11. Lynch DT, Zimmerman JS, Rowe DT . Epstein-Barr virus latent membrane protein 2B (LMP2B) co-localizes with LMP2A in perinuclear regions in transiently transfected cells. J Gen Virol 2002; 83: 1025–1035.

    Article  CAS  Google Scholar 

  12. Dawson CW, George JH, Blake SM, Longnecker R, Young LS . The Epstein-Barr virus encoded latent membrane protein 2A augments signaling from latent membrane protein 1. Virology 2001; 289: 192–207.

    Article  CAS  Google Scholar 

  13. Fluck M, Zurcher G, Andres AC, Ziemiecki A . Molecular characterization of the murine syk protein tyrosine kinase cDNA, transcripts and protein. Biochem Biophys Res Commun 1995; 213: 273–281.

    Article  CAS  Google Scholar 

  14. Coopman PJ, Do MT, Barth M, Bowden ET, Hayes AJ, Basyuk E et al. The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature 2000; 406: 742–747.

    Article  CAS  Google Scholar 

  15. Du ZM, Kou CW, Wang HY, Huang MY, Liao DZ, Hu CF et al. Clinical significance of elevated spleen tyrosine kinase expression in nasopharyngeal carcinoma. Head Neck 2012; 34: 1456–1464.

    Article  Google Scholar 

  16. Humphries JD, Byron A, Humphries MJ . Integrin ligands at a glance. J Cell Sci 2006; 119: 3901–3903.

    Article  CAS  Google Scholar 

  17. Lin TH, Rosales C, Mondal K, Bolen JB, Haskill S, Juliano RL . Integrin-mediated tyrosine phosphorylation and cytokine message induction in monocytic cells. A possible signaling role for the Syk tyrosine kinase. J Biol Chem 1995; 270: 16189–16197.

    Article  CAS  Google Scholar 

  18. Yan SR, Huang M, Berton G . Signaling by adhesion in human neutrophils: activation of the p72syk tyrosine kinase and formation of protein complexes containing p72syk and Src family kinases in neutrophils spreading over fibrinogen. J Immunol 1997; 158: 1902–1910.

    CAS  PubMed  Google Scholar 

  19. Clark EA, Shattil SJ, Ginsberg MH, Bolen J, Brugge JS . Regulation of the protein tyrosine kinase pp72syk by platelet agonists and the integrin alpha IIb beta 3. J Biol Chem 1994; 269: 28859–28864.

    CAS  PubMed  Google Scholar 

  20. Mainiero F, Pepe A, Wary KK, Spinardi L, Mohammadi M, Schlessinger J et al. Signal transduction by the alpha 6 beta 4 integrin: distinct beta 4 subunit sites mediate recruitment of Shc/Grb2 and association with the cytoskeleton of hemidesmosomes. EMBO J 1995; 14: 4470–4481.

    Article  CAS  Google Scholar 

  21. Lo AK, Yuen PW, Liu Y, Wang XH, Cheung AL, Wong YC et al. Downregulation of hemidesmosomal proteins in nasopharyngeal carcinoma cells. Cancer Lett 2001; 163: 117–123.

    Article  CAS  Google Scholar 

  22. Fung LF, Lo AK, Yuen PW, Liu Y, Wang XH, Tsao SW . Differential gene expression in nasopharyngeal carcinoma cells. Life Sci 2000; 67: 923–936.

    Article  CAS  Google Scholar 

  23. Bon G, Folgiero V, Di Carlo S, Sacchi A, Falcioni R . Involvement of alpha6beta4 integrin in the mechanisms that regulate breast cancer progression. Breast Cancer Res 2007; 9: 203.

    Article  Google Scholar 

  24. Chao C, Lotz MM, Clarke AC, Mercurio AM . A function for the integrin alpha6beta4 in the invasive properties of colorectal carcinoma cells. Cancer Res 1996; 56: 4811–4819.

    CAS  PubMed  Google Scholar 

  25. Yang X, Pursell B, Lu S, Chang TK, Mercurio AM . Regulation of beta 4-integrin expression by epigenetic modifications in the mammary gland and during the epithelial-to-mesenchymal transition. J Cell Sci 2009; 122: 2473–2480.

    Article  CAS  Google Scholar 

  26. Hino R, Uozaki H, Murakami N, Ushiku T, Shinozaki A, Ishikawa S et al. Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res 2009; 69: 2766–2774.

    Article  CAS  Google Scholar 

  27. Zhao J, Liang Q, Cheung KF, Kang W, Lung RW, Tong JH et al. Genome-wide identification of Epstein-Barr virus-driven promoter methylation profiles of human genes in gastric cancer cells. Cancer 2013; 119: 304–312.

    Article  CAS  Google Scholar 

  28. Giancotti FG, Stepp MA, Suzuki S, Engvall E, Ruoslahti E . Proteolytic processing of endogenous and recombinant beta 4 integrin subunit. J Cell Biol 1992; 118: 951–959.

    Article  CAS  Google Scholar 

  29. Potts AJ, Croall DE, Hemler ME . Proteolytic cleavage of the integrin beta 4 subunit. Exp Cell Res 1994; 212: 2–9.

    Article  CAS  Google Scholar 

  30. Draheim KM, Chen HB, Tao Q, Moore N, Roche M, Lyle S . ARRDC3 suppresses breast cancer progression by negatively regulating integrin beta4. Oncogene 2010; 29: 5032–5047.

    Article  CAS  Google Scholar 

  31. Underwood RA, Carter WG, Usui ML, Olerud JE . Ultrastructural localization of integrin subunits beta4 and alpha3 within the migrating epithelial tongue of in vivo human wounds. J Histochem Cytochem 2009; 57: 123–142.

    Article  CAS  Google Scholar 

  32. Soung YH, Gil HJ, Clifford JL, Chung J . Role of alpha6beta4 integrin in cell motility, invasion and metastasis of mammary tumors. Curr Protein Peptide Sci 2011; 12: 23–29.

    Article  CAS  Google Scholar 

  33. Lawson MA, Maxfield FR . Ca(2+)- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 1995; 377: 75–79.

    Article  CAS  Google Scholar 

  34. Yoon SO, Shin S, Mercurio AM . Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin. Cancer Res 2005; 65: 2761–2769.

    Article  CAS  Google Scholar 

  35. Caswell PT, Norman JC . Integrin trafficking and the control of cell migration. Traffic 2006; 7: 14–21.

    Article  CAS  Google Scholar 

  36. Giancotti FG . Targeting integrin beta4 for cancer and anti-angiogenic therapy. Trends Pharmacol Sci 2007; 28: 506–511.

    Article  CAS  Google Scholar 

  37. Spinardi L, Ren YL, Sanders R, Giancotti FG . The beta 4 subunit cytoplasmic domain mediates the interaction of alpha 6 beta 4 integrin with the cytoskeleton of hemidesmosomes. Mol Biol Cell 1993; 4: 871–884.

    Article  CAS  Google Scholar 

  38. Murgia C, Blaikie P, Kim N, Dans M, Petrie HT, Giancotti FG . Cell cycle and adhesion defects in mice carrying a targeted deletion of the integrin beta4 cytoplasmic domain. EMBO J 1998; 17: 3940–3951.

    Article  CAS  Google Scholar 

  39. Nievers MG, Schaapveld RQ, Oomen LC, Fontao L, Geerts D, Sonnenberg A . Ligand-independent role of the beta 4 integrin subunit in the formation of hemidesmosomes. J Cell Sci 1998; 111 (Pt 12): 1659–1672.

    CAS  PubMed  Google Scholar 

  40. Koster J, Kuikman I, Kreft M, Sonnenberg A . Two different mutations in the cytoplasmic domain of the integrin beta 4 subunit in nonlethal forms of epidermolysis bullosa prevent interaction of beta 4 with plectin. J Invest Dermatol 2001; 117: 1405–1411.

    Article  CAS  Google Scholar 

  41. Borradori L, Sonnenberg A . Structure and function of hemidesmosomes: more than simple adhesion complexes. J Invest Dermatol 1999; 112: 411–418.

    Article  CAS  Google Scholar 

  42. Rabinovitz I, Tsomo L, Mercurio AM . Protein kinase C-alpha phosphorylation of specific serines in the connecting segment of the beta 4 integrin regulates the dynamics of type II hemidesmosomes. Mol Cell Biol 2004; 24: 4351–4360.

    Article  CAS  Google Scholar 

  43. Merdek KD, Yang X, Taglienti CA, Shaw LM, Mercurio AM . Intrinsic signaling functions of the beta4 integrin intracellular domain. J Biol Chem 2007; 282: 30322–30330.

    Article  CAS  Google Scholar 

  44. Dutta U, Shaw LM . A key tyrosine (Y1494) in the beta4 integrin regulates multiple signaling pathways important for tumor development and progression. Cancer Res 2008; 68: 8779–8787.

    Article  CAS  Google Scholar 

  45. Yang X, Dutta U, Shaw LM . SHP2 mediates the localized activation of Fyn downstream of the alpha6beta4 integrin to promote carcinoma invasion. Mol Cell Biol 2010; 30: 5306–5317.

    Article  CAS  Google Scholar 

  46. Moroni M, Soldatenkov V, Zhang L, Zhang Y, Stoica G, Gehan E et al. Progressive loss of Syk and abnormal proliferation in breast cancer cells. Cancer Res 2004; 64: 7346–7354.

    Article  CAS  Google Scholar 

  47. Neuhaus B, Buhren S, Bock B, Alves F, Vogel WF, Kiefer F . Migration inhibition of mammary epithelial cells by Syk is blocked in the presence of DDR1 receptors. Cell Mol Life Sci 2011; 68: 3757–3770.

    Article  CAS  Google Scholar 

  48. Nakaya T, Kikuchi Y, Kunita A, Ishikawa S, Matsusaka K, Hino R et al. Enrichment of stem-like cell population comprises transformation ability of Epstein-Barr virus latent membrane protein 2A for non-transformed cells. Virus Res 2013; 174: 108–115.

    Article  CAS  Google Scholar 

  49. Winberg G, Matskova L, Chen F, Plant P, Rotin D, Gish G et al. Latent membrane protein 2A of Epstein-Barr virus binds WW domain E3 protein-ubiquitin ligases that ubiquitinate B-cell tyrosine kinases. Mol Cell Biol 2000; 20: 8526–8535.

    Article  CAS  Google Scholar 

  50. Ikeda M, Ikeda A, Longnecker R . PY motifs of Epstein-Barr virus LMP2A regulate protein stability and phosphorylation of LMP2A-associated proteins. J Virol 2001; 75: 5711–5718.

    Article  CAS  Google Scholar 

  51. Chami M, Oules B, Paterlini-Brechot P . Cytobiological consequences of calcium-signaling alterations induced by human viral proteins. Biochim Biophys Acta 2006; 1763: 1344–1362.

    Article  CAS  Google Scholar 

  52. Tohyama Y, Yamamura H . Protein tyrosine kinase, syk: a key player in phagocytic cells. J Biochem 2009; 145: 267–273.

    Article  CAS  Google Scholar 

  53. Galan JA, Paris LL, Zhang HJ, Adler J, Geahlen RL, Tao WA . Proteomic studies of Syk-interacting proteins using a novel amine-specific isotope tag and GFP nanotrap. J Am Soc Mass Spectrometry 2011; 22: 319–328.

    Article  CAS  Google Scholar 

  54. Utskarpen A, Massol R, van Deurs B, Lauvrak SU, Kirchhausen T, Sandvig K . Shiga toxin increases formation of clathrin-coated pits through Syk kinase. PLoS ONE 2010; 5: e10944.

    Article  Google Scholar 

  55. Fotheringham JA, Coalson NE, Raab-Traub N . Epstein-Barr virus latent membrane protein-2A induces ITAM/Syk- and Akt-dependent epithelial migration through alphav-integrin membrane translocation. J Virol 2012; 86: 10308–10320.

    Article  CAS  Google Scholar 

  56. Dykstra ML, Longnecker R, Pierce SK . Epstein-Barr virus coopts lipid rafts to block the signaling and antigen transport functions of the BCR. Immunity 2001; 14: 57–67.

    Article  CAS  Google Scholar 

  57. Kashyap T, Germain E, Roche M, Lyle S, Rabinovitz I . Role of beta4 integrin phosphorylation in human invasive squamous cell carcinoma: regulation of hemidesmosome stability modulates cell migration. Lab Invest 2011; 91: 1414–1426.

    Article  CAS  Google Scholar 

  58. Wolfenson H, Lavelin I, Geiger B . Dynamic regulation of the structure and functions of integrin adhesions. Dev Cell 2013; 24: 447–458.

    Article  CAS  Google Scholar 

  59. Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G et al. Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 2006; 126: 489–502.

    Article  CAS  Google Scholar 

  60. Bertotti A, Comoglio PM, Trusolino L . Beta4 integrin is a transforming molecule that unleashes Met tyrosine kinase tumorigenesis. Cancer Res 2005; 65: 10674–10679.

    Article  CAS  Google Scholar 

  61. Yoshioka T, Otero J, Chen Y, Kim YM, Koutcher JA, Satagopan J et al. beta4 Integrin signaling induces expansion of prostate tumor progenitors. J Clin Invest 2013; 123: 682–699.

    CAS  PubMed  Google Scholar 

  62. Ephstein Y, Singleton PA, Chen W, Wang L, Salgia R, Kanteti P et al. Critical role of S1PR1 and integrin beta4 in HGF/c-Met-mediated increases in vascular integrity. J Biol Chem 2013; 288: 2191–2200.

    Article  CAS  Google Scholar 

  63. Buettner M, Heussinger N, Niedobitek G . Expression of Epstein-Barr virus (EBV)-encoded latent membrane proteins and STAT3 activation in nasopharyngeal carcinoma. Virchows Archiv: Int J Pathol 2006; 449: 513–519.

    Article  CAS  Google Scholar 

  64. Li Q, Yang XH, Xu F, Sharma C, Wang HX, Knoblich K et al. Tetraspanin CD151 plays a key role in skin squamous cell carcinoma. Oncogene 2013; 32: 1772–1783.

    Article  CAS  Google Scholar 

  65. Brennan B . Nasopharyngeal carcinoma. Orphanet J Rare Dis 2006; 1: 23.

    Article  Google Scholar 

  66. Grenklo S, Hillberg L, Zhao Rathje LS, Pinaev G, Schutt CE, Lindberg U . Tropomyosin assembly intermediates in the control of microfilament system turnover. Eur J Cell Biol 2008; 87: 905–920.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Cancer Society, the Swedish Research Council,Karolinska Institutet Research funds and by the Maths O Sundqvist family foundation; National Key Basic Research Program of China (2012CB526607) and Guangxi Natural Science Foundation (2013GXNSFGA019002). We thank Gösta Winberg for valuable comments to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Ernberg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Matskova, L., Rathje, LS. et al. SYK interaction with ITGβ4 suppressed by Epstein-Barr virus LMP2A modulates migration and invasion of nasopharyngeal carcinoma cells. Oncogene 34, 4491–4499 (2015). https://doi.org/10.1038/onc.2014.380

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.380

This article is cited by

Search

Quick links