Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A balancing act: orchestrating amino-truncated and full-length p73 variants as decisive factors in cancer progression

Subjects

Abstract

p73 is the older sibling of p53 and mimics most of its tumor-suppressor functions. Through alternative promoter usage and splicing, the TP73 gene generates more than two dozen isoforms of which N-terminal truncated DNp73 variants have a decisive role in cancer pathogenesis as they outweigh the positive effects of full-length TAp73 and p53 in acting as a barrier to tumor development. Beyond the prevailing view that DNp73 predominantly counteract cell cycle arrest and apoptosis, latest progress indicates that these isoforms acquire novel functions in epithelial-to-mesenchymal transition, metastasis and therapy resistance. New insight into the mechanisms underlying this behavior reinforced the expectation that DNp73 variants contribute to aggressive cellular traits through both loss of wild-type tumor-suppressor activity and gain-of-function, suggesting an equally important role in cancer progression as mutant p53. In this review, we describe the novel properties of DNp73 in the invasion metastasis cascade and outline the comprehensive p73 regulatome with an emphasis on molecular processes putting TAp73 out of action in advanced tumors. These intriguing insights provoke a new understanding of the acquisition of aggressive traits by cancer cells and may help to set novel therapies for a broad range of metastatic tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Buhlmann S, Putzer BM . DNp73 a matter of cancer: mechanisms and clinical implications. Biochim Biophys Acta 2008; 1785: 207–216.

    CAS  PubMed  Google Scholar 

  2. Niemantsverdriet M, Nagle P, Chiu RK, Langendijk JA, Kampinga HH, Coppes RP . DeltaNp73 enhances promoter activity of TGF-beta induced genes. PLoS One 2012; 7: e50815.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Weissmueller S, Manchado E, Saborowski M, Morris JPt, Wagenblast E, Davis CA et al. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor beta signaling. Cell 2014; 157: 382–394.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wetterskog D, Moshiri A, Ozaki T, Uramoto H, Nakagawara A, Funa K . Dysregulation of platelet-derived growth factor beta-receptor expression by DeltaNp73 in neuroblastoma. Mol Cancer Res 2009; 7: 2031–2039.

    CAS  PubMed  Google Scholar 

  5. Casciano I, Mazzocco K, Boni L, Pagnan G, Banelli B, Allemanni G et al. Expression of DeltaNp73 is a molecular marker for adverse outcome in neuroblastoma patients. Cell Death Differ 2002; 9: 246–251.

    Article  CAS  PubMed  Google Scholar 

  6. Concin N, Becker K, Slade N, Erster S, Mueller-Holzner E, Ulmer H et al. Transdominant DeltaTAp73 isoforms are frequently up-regulated in ovarian cancer. Evidence for their role as epigenetic p53 inhibitors in vivo. Cancer Res 2004; 64: 2449–2460.

    CAS  PubMed  Google Scholar 

  7. Dominguez G, Garcia JM, Pena C, Silva J, Garcia V, Martinez L et al. DeltaTAp73 upregulation correlates with poor prognosis in human tumors: putative in vivo network involving p73 isoforms, p53, and E2F-1. J Clin Oncol 2006; 24: 805–815.

    Article  CAS  PubMed  Google Scholar 

  8. Faridoni-Laurens L, Tourpin S, Alsafadi S, Barrois M, Temam S, Janot F et al. Involvement of N-terminally truncated variants of p73, deltaTAp73, in head and neck squamous cell cancer: a comparison with p53 mutations. Cell Cycle 2008; 7: 1587–1596.

    CAS  PubMed  Google Scholar 

  9. Lau LM, Wolter JK, Lau JT, Cheng LS, Smith KM, Hansford LM et al. Cyclooxygenase inhibitors differentially modulate p73 isoforms in neuroblastoma. Oncogene 2009; 28: 2024–2033.

    CAS  PubMed  Google Scholar 

  10. Melino G, De Laurenzi V, Vousden KH . p73: Friend or foe in tumorigenesis. Nat Rev Cancer 2002; 2: 605–615.

    CAS  PubMed  Google Scholar 

  11. Moll UM, Slade N . p63 and p73: roles in development and tumor formation. Mol Cancer Res 2004; 2: 371–386.

    CAS  PubMed  Google Scholar 

  12. Muller M, Schilling T, Sayan AE, Kairat A, Lorenz K, Schulze-Bergkamen H et al. TAp73/Delta Np73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma. Cell Death Differ 2005; 12: 1564–1577.

    CAS  PubMed  Google Scholar 

  13. Soldevilla B, Diaz R, Silva J, Campos-Martin Y, Munoz C, Garcia V et al. Prognostic impact of DeltaTAp73 isoform levels and their target genes in colon cancer patients. Clin Cancer Res 2011; 17: 6029–6039.

    CAS  PubMed  Google Scholar 

  14. Stiewe T, Tuve S, Peter M, Tannapfel A, Elmaagacli AH, Putzer BM . Quantitative TP73 transcript analysis in hepatocellular carcinomas. Clin Cancer Res 2004; 10: 626–633.

    Article  CAS  PubMed  Google Scholar 

  15. Tuve S, Wagner SN, Schittek B, Putzer BM . Alterations of DeltaTA-p 73 splice transcripts during melanoma development and progression. Int J Cancer 2004; 108: 162–166.

    CAS  PubMed  Google Scholar 

  16. Uramoto H, Sugio K, Oyama T, Nakata S, Ono K, Morita M et al. Expression of deltaNp73 predicts poor prognosis in lung cancer. Clin Cancer Res 2004; 10: 6905–6911.

    CAS  PubMed  Google Scholar 

  17. Zitterbart K, Zavrelova I, Kadlecova J, Spesna R, Kratochvilova A, Pavelka Z et al. p73 expression in medulloblastoma: TAp73/DeltaNp73 transcript detection and possible association of p73alpha/DeltaNp73 immunoreactivity with survival. Acta Neuropathol 2007; 114: 641–650.

    CAS  PubMed  Google Scholar 

  18. Di C, Yang L, Zhang H, Ma X, Zhang X, Sun C et al. Mechanisms, function and clinical applications of DNp73. Cell Cycle 2013; 12: 1861–1867.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Soldevilla B, Millan CS, Bonilla F, Dominguez G . The TP73 complex network: ready for clinical translation in cancer? Genes Chromosomes Cancer 2013; 52: 989–1006.

    CAS  PubMed  Google Scholar 

  20. Steder M, Alla V, Meier C, Spitschak A, Pahnke J, Furst K et al. DNp73 exerts function in metastasis initiation by disconnecting the inhibitory role of EPLIN on IGF1R-AKT/STAT3 signaling. Cancer Cell 2013; 24: 512–527.

    CAS  PubMed  Google Scholar 

  21. Vilgelm AE, Hong SM, Washington MK, Wei J, Chen H, El-Rifai W et al. Characterization of DeltaNp73 expression and regulation in gastric and esophageal tumors. Oncogene 2010; 29: 5861–5868.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee CW, La Thangue NB . Promoter specificity and stability control of the p53-related protein p73. Oncogene 1999; 18: 4171–4181.

    CAS  PubMed  Google Scholar 

  23. Strano S, Monti O, Pediconi N, Baccarini A, Fontemaggi G, Lapi E et al. The transcriptional coactivator Yes-associated protein drives p73 gene-target specificity in response to DNA Damage. Mol Cell 2005; 18: 447–459.

    CAS  PubMed  Google Scholar 

  24. Beitzinger M, Oswald C, Beinoraviciute-Kellner R, Stiewe T . Regulation of telomerase activity by the p53 family member p73. Oncogene 2006; 25: 813–826.

    CAS  PubMed  Google Scholar 

  25. Racek T, Mise N, Li Z, Stoll A, Putzer BM . C-terminal p73 isoforms repress transcriptional activity of the human telomerase reverse transcriptase (hTERT) promoter. J Biol Chem 2005; 280: 40402–40405.

    CAS  PubMed  Google Scholar 

  26. Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini A, Cheung CC et al. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev 2008; 22: 2677–2691.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shimodaira H, Yoshioka-Yamashita A, Kolodner RD, Wang JY . Interaction of mismatch repair protein PMS2 and the p53-related transcription factor p73 in apoptosis response to cisplatin. Proc Natl Acad Sci USA 2003; 100: 2420–2425.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zaika E, Wei J, Yin D, Andl C, Moll U, El-Rifai W et al. p73 protein regulates DNA damage repair. FASEB J 2011; 25: 4406–4414.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin YL, Sengupta S, Gurdziel K, Bell GW, Jacks T, Flores ER . p63 and p73 transcriptionally regulate genes involved in DNA repair. PLoS Genet 2009; 5: e1000680.

    PubMed  PubMed Central  Google Scholar 

  30. Tomasini R, Tsuchihara K, Tsuda C, Lau SK, Wilhelm M, Ruffini A et al. TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity. Proc Natl Acad Sci USA 2009; 106: 797–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Merlo P, Fulco M, Costanzo A, Mangiacasale R, Strano S, Blandino G et al. A role of p73 in mitotic exit. J Biol Chem 2005; 280: 30354–30360.

    CAS  PubMed  Google Scholar 

  32. Toh WH, Nam SY, Sabapathy K . An essential role for p73 in regulating mitotic cell death. Cell Death Differ 2010; 17: 787–800.

    CAS  PubMed  Google Scholar 

  33. Talos F, Nemajerova A, Flores ER, Petrenko O, Moll UM . p73 suppresses polyploidy and aneuploidy in the absence of functional p53. Mol Cell 2007; 27: 647–659.

    CAS  PubMed  Google Scholar 

  34. Candi E, Agostini M, Melino G, Bernassola F . How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat 2014; 35: 702–714.

    CAS  PubMed  Google Scholar 

  35. Logotheti S, Pavlopoulou A, Galtsidis S, Vojtesek B, Zoumpourlis V . Functions, divergence and clinical value of TAp73 isoforms in cancer. Cancer Metastasis Rev 2013; 32: 511–534.

    CAS  PubMed  Google Scholar 

  36. Pietsch EC, Sykes SM, McMahon SB, Murphy ME . The p53 family and programmed cell death. Oncogene 2008; 27: 6507–6521.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Melino G, Bernassola F, Ranalli M, Yee K, Zong WX, Corazzari M et al. p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem 2004; 279: 8076–8083.

    CAS  PubMed  Google Scholar 

  38. John K, Alla V, Meier C, Putzer BM . GRAMD4 mimics p53 and mediates the apoptotic function of p73 at mitochondria. Cell Death Differ 2011; 18: 874–886.

    CAS  PubMed  Google Scholar 

  39. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003; 11: 577–590.

    CAS  PubMed  Google Scholar 

  40. Sayan AE, Sayan BS, Gogvadze V, Dinsdale D, Nyman U, Hansen TM et al. P73 and caspase-cleaved p73 fragments localize to mitochondria and augment TRAIL-induced apoptosis. Oncogene 2008; 27: 4363–4372.

    CAS  PubMed  Google Scholar 

  41. Liu T, Roh SE, Woo JA, Ryu H, Kang DE . Cooperative role of RanBP9 and P73 in mitochondria-mediated apoptosis. Cell Death Dis 2013; 4: e476.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Terrinoni A, Ranalli M, Cadot B, Leta A, Bagetta G, Vousden KH et al. p73-alpha is capable of inducing scotin and ER stress. Oncogene 2004; 23: 3721–3725.

    CAS  PubMed  Google Scholar 

  43. Guerrieri F, Piconese S, Lacoste C, Schinzari V, Testoni B, Valogne Y et al. The sodium/iodide symporter NIS is a transcriptional target of the p53-family members in liver cancer cells. Cell Death Dis 2013; 4: e807.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Klanrit P, Taebunpakul P, Flinterman MB, Odell EW, Riaz MA, Melino G et al. PML involvement in the p73-mediated E1A-induced suppression of EGFR and induction of apoptosis in head and neck cancers. Oncogene 2009; 28: 3499–3512.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Baxter RC . IGF binding proteins in cancer: mechanistic and clinical insights. Nat Rev Cancer 2014; 14: 329–341.

    CAS  PubMed  Google Scholar 

  46. Harms KL, Chen X . The C terminus of p53 family proteins is a cell fate determinant. Mol Cell Biol 2005; 25: 2014–2030.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang P, Liu SS, Ngan HY . TAp73-mediated the activation of c-Jun N-terminal kinase enhances cellular chemosensitivity to cisplatin in ovarian cancer cells. PLoS One 2012; 7: e42985.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sasaki Y, Mita H, Toyota M, Ishida S, Morimoto I, Yamashita T et al. Identification of the interleukin 4 receptor alpha gene as a direct target for p73. Cancer Res 2003; 63: 8145–8152.

    CAS  PubMed  Google Scholar 

  49. Broadhead ML, Dass CR, Choong PF . Cancer cell apoptotic pathways mediated by PEDF: prospects for therapy. Trends Mol Med 2009; 15: 461–467.

    CAS  PubMed  Google Scholar 

  50. Sasaki Y, Naishiro Y, Oshima Y, Imai K, Nakamura Y, Tokino T . Identification of pigment epithelium-derived factor as a direct target of the p53 family member genes. Oncogene 2005; 24: 5131–5136.

    CAS  PubMed  Google Scholar 

  51. Ho TC, Chen SL, Yang YC, Liao CL, Cheng HC, Tsao YP . PEDF induces p53-mediated apoptosis through PPAR gamma signaling in human umbilical vein endothelial cells. Cardiovasc Res 2007; 76: 213–223.

    CAS  PubMed  Google Scholar 

  52. Diaz R, Pena C, Silva J, Lorenzo Y, Garcia V, Garcia JM et al. p73 Isoforms affect VEGF, VEGF165b and PEDF expression in human colorectal tumors: VEGF165b downregulation as a marker of poor prognosis. Int J Cancer 2008; 123: 1060–1067.

    CAS  PubMed  Google Scholar 

  53. Rastogi S, Rizwani W, Joshi B, Kunigal S, Chellappan SP . TNF-alpha response of vascular endothelial and vascular smooth muscle cells involve differential utilization of ASK1 kinase and p73. Cell Death Differ 2012; 19: 274–283.

    CAS  PubMed  Google Scholar 

  54. Yamamura Y, Lee WL, Goh MX, Ito Y . Role of TAp73alpha in induction of apoptosis by transforming growth factor-beta in gastric cancer cells. FEBS Lett 2008; 582: 2663–2667.

    CAS  PubMed  Google Scholar 

  55. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112: 1809–1820.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Crighton D, O'Prey J, Bell HS, Ryan KM . p73 regulates DRAM-independent autophagy that does not contribute to programmed cell death. Cell Death Differ 2007; 14: 1071–1079.

    CAS  PubMed  Google Scholar 

  57. Liu K, Shi Y, Guo X, Wang S, Ouyang Y, Hao M et al. CHOP mediates ASPP2-induced autophagic apoptosis in hepatoma cells by releasing Beclin-1 from Bcl-2 and inducing nuclear translocation of Bcl-2. Cell Death Dis 2014; 5: e1323.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rosenbluth JM, Mays DJ, Pino MF, Tang LJ, Pietenpol JA . A gene signature-based approach identifies mTOR as a regulator of p73. Mol Cell Biol 2008; 28: 5951–5964.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. He Z, Liu H, Agostini M, Yousefi S, Perren A, Tschan MP et al. p73 regulates autophagy and hepatocellular lipid metabolism through a transcriptional activation of the ATG5 gene. Cell Death Differ 2013; 20: 1415–1424.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schipper H, Alla V, Meier C, Nettelbeck DM, Herchenroder O, Putzer BM . Eradication of metastatic melanoma through cooperative expression of RNA-based HDAC1 inhibitor and p73 by oncolytic adenovirus. Oncotarget 2014; 5: 5893–5907.

    PubMed  PubMed Central  Google Scholar 

  61. Rufini A, Niklison-Chirou MV, Inoue S, Tomasini R, Harris IS, Marino A et al. TAp73 depletion accelerates aging through metabolic dysregulation. Genes Dev 2012; 26: 2009–2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dixit D, Ghildiyal R, Anto NP, Sen E . Chaetocin-induced ROS-mediated apoptosis involves ATM-YAP1 axis and JNK-dependent inhibition of glucose metabolism. Cell Death Dis 2014; 5: e1212.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Blum R, Kloog Y . Metabolism addiction in pancreatic cancer. Cell Death Dis 2014; 5: e1065.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Du W, Jiang P, Mancuso A, Stonestrom A, Brewer MD, Minn AJ et al. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol 2013; 15: 991–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Amelio I, Markert EK, Rufini A, Antonov AV, Sayan BS, Tucci P et al. p73 regulates serine biosynthesis in cancer. Oncogene 2014; 33: 5039–5046.

    CAS  PubMed  Google Scholar 

  66. Conforti F, Yang AL, Agostini M, Rufini A, Tucci P, Nicklison-Chirou MV et al. Relative expression of TAp73 and DeltaNp73 isoforms. Aging (Albany NY) 2012; 4: 202–205.

    CAS  PubMed Central  Google Scholar 

  67. Petrenko O, Zaika A, Moll UM . deltaNp73 facilitates cell immortalization and cooperates with oncogenic Ras in cellular transformation in vivo. Mol Cell Biol 2003; 23: 5540–5555.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Stiewe T, Zimmermann S, Frilling A, Esche H, Putzer BM . Transactivation-deficient DeltaTA-p73 acts as an oncogene. Cancer Res 2002; 62: 3598–3602.

    CAS  PubMed  Google Scholar 

  69. Beitzinger M, Hofmann L, Oswald C, Beinoraviciute-Kellner R, Sauer M, Griesmann H et al. p73 poses a barrier to malignant transformation by limiting anchorage-independent growth. EMBO J 2008; 27: 792–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tannapfel A, John K, Mise N, Schmidt A, Buhlmann S, Ibrahim SM et al. Autonomous growth and hepatocarcinogenesis in transgenic mice expressing the p53 family inhibitor DNp73. Carcinogenesis 2008; 29: 211–218.

    CAS  PubMed  Google Scholar 

  71. Cam H, Griesmann H, Beitzinger M, Hofmann L, Beinoraviciute-Kellner R, Sauer M et al. p53 family members in myogenic differentiation and rhabdomyosarcoma development. Cancer Cell 2006; 10: 281–293.

    CAS  PubMed  Google Scholar 

  72. Huttinger-Kirchhof N, Cam H, Griesmann H, Hofmann L, Beitzinger M, Stiewe T . The p53 family inhibitor DeltaNp73 interferes with multiple developmental programs. Cell Death Differ 2006; 13: 174–177.

    CAS  PubMed  Google Scholar 

  73. Ishimoto O, Kawahara C, Enjo K, Obinata M, Nukiwa T, Ikawa S . Possible oncogenic potential of DeltaNp73: a newly identified isoform of human p73. Cancer Res 2002; 62: 636–641.

    CAS  PubMed  Google Scholar 

  74. Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW . p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 2006; 9: 45–56.

    CAS  PubMed  Google Scholar 

  75. Stiewe T, Theseling CC, Putzer BM . Transactivation-deficient Delta TA-p73 inhibits p53 by direct competition for DNA binding: implications for tumorigenesis. J Biol Chem 2002; 277: 14177–14185.

    CAS  PubMed  Google Scholar 

  76. Zaika AI, Slade N, Erster SH, Sansome C, Joseph TW, Pearl M et al. DeltaNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. J Exp Med 2002; 196: 765–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bailey SG, Cragg MS, Townsend PA . Family friction as DeltaNp73 antagonises p73 and p53. Int J Biochem Cell Biol 2011; 43: 482–486.

    CAS  PubMed  Google Scholar 

  78. Stiewe T, Stanelle J, Theseling CC, Pollmeier B, Beitzinger M, Putzer BM . Inactivation of retinoblastoma (RB) tumor suppressor by oncogenic isoforms of the p53 family member p73. J Biol Chem 2003; 278: 14230–14236.

    CAS  PubMed  Google Scholar 

  79. Liu SS, Chan KY, Cheung AN, Liao XY, Leung TW, Ngan HY . Expression of deltaNp73 and TAp73alpha independently associated with radiosensitivities and prognoses in cervical squamous cell carcinoma. Clin Cancer Res 2006; 12: 3922–3927.

    CAS  PubMed  Google Scholar 

  80. Liu SS, Leung RC, Chan KY, Chiu PM, Cheung AN, Tam KF et al. p73 expression is associated with the cellular radiosensitivity in cervical cancer after radiotherapy. Clin Cancer Res 2004; 10: 3309–3316.

    CAS  PubMed  Google Scholar 

  81. Concin N, Hofstetter G, Berger A, Gehmacher A, Reimer D, Watrowski R et al. Clinical relevance of dominant-negative p73 isoforms for responsiveness to chemotherapy and survival in ovarian cancer: evidence for a crucial p53-p73 cross-talk in vivo. Clin Cancer Res 2005; 11: 8372–8383.

    CAS  PubMed  Google Scholar 

  82. Schuster A, Schilling T, De Laurenzi V, Koch AF, Seitz S, Staib F et al. DeltaNp73beta is oncogenic in hepatocellular carcinoma by blocking apoptosis signaling via death receptors and mitochondria. Cell Cycle 2010; 9: 2629–2639.

    CAS  PubMed  Google Scholar 

  83. Simoes-Wust AP, Sigrist B, Belyanskaya L, Hopkins Donaldson S, Stahel RA, Zangemeister-Wittke U . DeltaNp73 antisense activates PUMA and induces apoptosis in neuroblastoma cells. J Neurooncol 2005; 72: 29–34.

    CAS  PubMed  Google Scholar 

  84. Vilgelm A, Wei JX, Piazuelo MB, Washington MK, Prassolov V, El-Rifai W et al. DeltaNp73alpha regulates MDR1 expression by inhibiting p53 function. Oncogene 2008; 27: 2170–2176.

    CAS  PubMed  Google Scholar 

  85. Alla V, Kowtharapu BS, Engelmann D, Emmrich S, Schmitz U, Steder M et al. E2F1 confers anticancer drug resistance by targeting ABC transporter family members and Bcl-2 via the p73/DNp73-miR-205 circuitry. Cell Cycle 2012; 11: 3067–3078.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Vera J, Schmitz U, Lai X, Engelmann D, Khan FM, Wolkenhauer O et al. Kinetic modeling-based detection of genetic signatures that provide chemoresistance via the E2F1-p73/DNp73-miR-205 network. Cancer Res 2013; 73: 3511–3524.

    CAS  PubMed  Google Scholar 

  87. Wilhelm MT, Rufini A, Wetzel MK, Tsuchihara K, Inoue S, Tomasini R et al. Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway. Genes Dev 2010; 24: 549–560.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee AF, Ho DK, Zanassi P, Walsh GS, Kaplan DR, Miller FD . Evidence that DeltaNp73 promotes neuronal survival by p53-dependent and p53-independent mechanisms. J Neurosci 2004; 24: 9174–9184.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Vella V, Puppin C, Damante G, Vigneri R, Sanfilippo M, Vigneri P et al. DeltaNp73alpha inhibits PTEN expression in thyroid cancer cells. Int J Cancer 2009; 124: 2539–2548.

    CAS  PubMed  Google Scholar 

  90. Nahor I, Abramovitch S, Engeland K, Werner H . The p53-family members p63 and p73 inhibit insulin-like growth factor-I receptor gene expression in colon cancer cells. Growth Horm IGF Res 2005; 15: 388–396.

    CAS  PubMed  Google Scholar 

  91. Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 2010; 18: 683–695.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang Y, Yan W, Jung YS, Chen X . Mammary epithelial cell polarity is regulated differentially by p73 isoforms via epithelial-to-mesenchymal transition. J Biol Chem 2012; 287: 17746–17753.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang Y, Yan W, Jung YS, Chen X . PUMA cooperates with p21 to regulate mammary epithelial morphogenesis and epithelial-to-mesenchymal transition. PLoS One 2013; 8: e66464.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Puppin C, Passon N, Frasca F, Vigneri R, Tomay F, Tomaciello S et al. In thyroid cancer cell lines expression of periostin gene is controlled by p73 and is not related to epigenetic marks of active transcription. Cell Oncol (Dordr) 2011; 34: 131–140.

    CAS  Google Scholar 

  95. Hackzell A, Uramoto H, Izumi H, Kohno K, Funa K . p73 independent of c-Myc represses transcription of platelet-derived growth factor beta-receptor through interaction with NF-Y. J Biol Chem 2002; 277: 39769–39776.

    CAS  PubMed  Google Scholar 

  96. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    CAS  PubMed  Google Scholar 

  97. Lin Y, Cheng Z, Yang Z, Zheng J, Lin T . DNp73 improves generation efficiency of human induced pluripotent stem cells. BMC Cell Biol 2012; 13: 9.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun 2014; 5: 3472.

    PubMed  Google Scholar 

  99. Luh LM, Kehrloesser S, Deutsch GB, Gebel J, Coutandin D, Schafer B et al. Analysis of the oligomeric state and transactivation potential of TAp73alpha. Cell Death Differ 2013; 20: 1008–1016.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Rossi M, De Laurenzi V, Munarriz E, Green DR, Liu YC, Vousden KH et al. The ubiquitin-protein ligase Itch regulates p73 stability. EMBO J 2005; 24: 836–848.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Oberst A, Malatesta M, Aqeilan RI, Rossi M, Salomoni P, Murillas R et al. The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch. Proc Natl Acad Sci USA 2007; 104: 11280–11285.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hosoda M, Ozaki T, Miyazaki K, Hayashi S, Furuya K, Watanabe K et al. UFD2a mediates the proteasomal turnover of p73 without promoting p73 ubiquitination. Oncogene 2005; 24: 7156–7169.

    CAS  PubMed  Google Scholar 

  103. Asher G, Tsvetkov P, Kahana C, Shaul Y . A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev 2005; 19: 316–321.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang J, Xu E, Chen X . TAp73 protein stability is controlled by histone deacetylase 1 via regulation of Hsp90 chaperone function. J Biol Chem 2013; 288: 7727–7737.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Yan W, Zhang J, Zhang Y, Jung YS, Chen X . p73 expression is regulated by RNPC1, a target of the p53 family, via mRNA stability. Mol Cell Biol 2012; 32: 2336–2348.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Gaiddon C, Lokshin M, Gross I, Levasseur D, Taya Y, Loeffler JP et al. Cyclin-dependent kinases phosphorylate p73 at threonine 86 in a cell cycle-dependent manner and negatively regulate p73. J Biol Chem 2003; 278: 27421–27431.

    CAS  PubMed  Google Scholar 

  107. Levy D, Adamovich Y, Reuven N, Shaul Y . The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73. Cell Death Differ 2007; 14: 743–751.

    CAS  PubMed  Google Scholar 

  108. Kim EJ, Park JS, Um SJ . Identification and characterization of HIPK2 interacting with p73 and modulating functions of the p53 family in vivo. J Biol Chem 2002; 277: 32020–32028.

    CAS  PubMed  Google Scholar 

  109. Lapi E, Di Agostino S, Donzelli S, Gal H, Domany E, Rechavi G et al. PML, YAP, and p73 are components of a proapoptotic autoregulatory feedback loop. Mol Cell 2008; 32: 803–814.

    CAS  PubMed  Google Scholar 

  110. Yoshida K, Yamaguchi T, Natsume T, Kufe D, Miki Y . JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage. Nat Cell Biol 2005; 7: 278–285.

    CAS  PubMed  Google Scholar 

  111. Baskaran R, Wood LD, Whitaker LL, Canman CE, Morgan SE, Xu Y et al. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature 1997; 387: 516–519.

    CAS  PubMed  Google Scholar 

  112. Shafman T, Khanna KK, Kedar P, Spring K, Kozlov S, Yen T et al. Interaction between ATM protein and c-Abl in response to DNA damage. Nature 1997; 387: 520–523.

    CAS  PubMed  Google Scholar 

  113. Agami R, Blandino G, Oren M, Shaul Y . Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature 1999; 399: 809–813.

    CAS  PubMed  Google Scholar 

  114. Levy D, Adamovich Y, Reuven N, Shaul Y . Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol Cell 2008; 29: 350–361.

    CAS  PubMed  Google Scholar 

  115. Levy D, Reuven N, Shaul Y . A regulatory circuit controlling Itch-mediated p73 degradation by Runx. J Biol Chem 2008; 283: 27462–27468.

    CAS  PubMed  Google Scholar 

  116. Mantovani F, Piazza S, Gostissa M, Strano S, Zacchi P, Mantovani R et al. Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol Cell 2004; 14: 625–636.

    CAS  PubMed  Google Scholar 

  117. Costanzo A, Merlo P, Pediconi N, Fulco M, Sartorelli V, Cole PA et al. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol Cell 2002; 9: 175–186.

    CAS  PubMed  Google Scholar 

  118. Sanchez-Prieto R, Sanchez-Arevalo VJ, Servitja JM, Gutkind JS . Regulation of p73 by c-Abl through the p38 MAP kinase pathway. Oncogene 2002; 21: 974–979.

    CAS  PubMed  Google Scholar 

  119. Yuan ZM, Utsugisawa T, Ishiko T, Nakada S, Huang Y, Kharbanda S et al. Activation of protein kinase C delta by the c-Abl tyrosine kinase in response to ionizing radiation. Oncogene 1998; 16: 1643–1648.

    CAS  PubMed  Google Scholar 

  120. Ren J, Datta R, Shioya H, Li Y, Oki E, Biedermann V et al. p73beta is regulated by protein kinase Cdelta catalytic fragment generated in the apoptotic response to DNA damage. J Biol Chem 2002; 277: 33758–33765.

    CAS  PubMed  Google Scholar 

  121. Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin WG Jr, Levrero M et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 1999; 399: 806–809.

    CAS  PubMed  Google Scholar 

  122. Jones EV, Dickman MJ, Whitmarsh AJ . Regulation of p73-mediated apoptosis by c-Jun N-terminal kinase. Biochem J 2007; 405: 617–623.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Toh WH, Siddique MM, Boominathan L, Lin KW, Sabapathy K . c-Jun regulates the stability and activity of the p53 homologue, p73. J Biol Chem 2004; 279: 44713–44722.

    CAS  PubMed  Google Scholar 

  124. Bergamaschi D, Samuels Y, Jin B, Duraisingham S, Crook T, Lu X . ASPP1 and ASPP2: common activators of p53 family members. Mol Cell Biol 2004; 24: 1341–1350.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Patel S, George R, Autore F, Fraternali F, Ladbury JE, Nikolova PV . Molecular interactions of ASPP1 and ASPP2 with the p53 protein family and the apoptotic promoters PUMA and Bax. Nucleic Acids Res 2008; 36: 5139–5151.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Sang M, Li Y, Ozaki T, Ono S, Ando K, Yamamoto H et al. p73-dependent induction of 14-3-3sigma increases the chemo-sensitivity of drug-resistant human breast cancers. Biochem Biophys Res Commun 2006; 347: 327–333.

    CAS  PubMed  Google Scholar 

  127. Lehman JA, Waning DL, Batuello CN, Cipriano R, Kadakia MP, Mayo LD . Induction of apoptotic genes by a p73-phosphatase and tensin homolog (p73-PTEN) protein complex in response to genotoxic stress. J Biol Chem 2011; 286: 36631–36640.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Watanabe K, Ozaki T, Nakagawa T, Miyazaki K, Takahashi M, Hosoda M et al. Physical interaction of p73 with c-Myc and MM1, a c-Myc-binding protein, and modulation of the p73 function. J Biol Chem 2002; 277: 15113–15123.

    CAS  PubMed  Google Scholar 

  129. Leung TH, Ngan HY . Interaction of TAp73 and breast cancer-associated gene 3 enhances the sensitivity of cervical cancer cells in response to irradiation-induced apoptosis. Cancer Res 2010; 70: 6486–6496.

    CAS  PubMed  Google Scholar 

  130. Bon G, Di Carlo SE, Folgiero V, Avetrani P, Lazzari C, D'Orazi G et al. Negative regulation of beta4 integrin transcription by homeodomain-interacting protein kinase 2 and p53 impairs tumor progression. Cancer Res 2009; 69: 5978–5986.

    CAS  PubMed  Google Scholar 

  131. Tordella L, Koch S, Salter V, Pagotto A, Doondeea JB, Feller SM et al. ASPP2 suppresses squamous cell carcinoma via RelA/p65-mediated repression of p63. Proc Natl Acad Sci USA 2013; 110: 17969–17974.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wei WL, Hu HY, Zhang LJ, Chen Y, Ye E, Wang XF . [Promoter methylation of ASPP1 and ASPP2 genes in non-small cell lung cancers]. Zhonghua Bing Li Xue Za Zhi 2011; 40: 532–536.

    CAS  PubMed  Google Scholar 

  133. Sayan BS, Yang AL, Conforti F, Tucci P, Piro MC, Browne GJ et al. Differential control of TAp73 and DNp73 protein stability by the ring finger ubiquitin ligase PIR2. Proc Natl Acad Sci USA 2010; 107: 12877–12882.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Bunjobpol W, Dulloo I, Igarashi K, Concin N, Matsuo K, Sabapathy K . Suppression of acetylpolyamine oxidase by selected AP-1 members regulates DNp73 abundance: mechanistic insights for overcoming DNp73-mediated resistance to chemotherapeutic drugs. Cell Death Differ 2014; 21: 1240–1249.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Dulloo I, Gopalan G, Melino G, Sabapathy K . The antiapoptotic DeltaNp73 is degraded in a c-Jun-dependent manner upon genotoxic stress through the antizyme-mediated pathway. Proc Natl Acad Sci USA 2010; 107: 4902–4907.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Chaudhary N, Maddika S . WWP2-WWP1 ubiquitin ligase complex coordinated by PPM1G maintains the balance between cellular p73 and DeltaNp73 levels. Mol Cell Biol 2014.

  137. Pan C, Liu HD, Gong Z, Yu X, Hou XB, Xie DD et al. Cadmium is a potent inhibitor of PPM phosphatases and targets the M1 binding site. Sci Rep 2013; 3: 2333.

    PubMed  PubMed Central  Google Scholar 

  138. Qian Y, Zhang J, Yan B, Chen X . DEC1, a basic helix-loop-helix transcription factor and a novel target gene of the p53 family, mediates p53-dependent premature senescence. J Biol Chem 2008; 283: 2896–2905.

    CAS  PubMed  Google Scholar 

  139. Qian Y, Zhang J, Jung YS, Chen X . DEC1 coordinates with HDAC8 to differentially regulate TAp73 and DeltaNp73 expression. PLoS One 2014; 9: e84015.

    PubMed  PubMed Central  Google Scholar 

  140. Kunimoto Y, Nakano S, Kataoka H, Shimada Y, Oshimura M, Kitano H . Deleted in Esophageal Cancer 1(DEC1) is down-regulated and contributes to migration in head and neck squamous cell carcinoma cell lines. ORL J Otorhinolaryngol Relat Spec 2011; 73: 17–23.

    CAS  PubMed  Google Scholar 

  141. Liu Y, Wang L, Lin XY, Wang J, Yu JH, Miao Y et al. The transcription factor DEC1 (BHLHE40/STRA13/SHARP-2) is negatively associated with TNM stage in non-small-cell lung cancer and inhibits the proliferation through cyclin D1 in A549 and BE1 cells. Tumour Biol 2013; 34: 1641–1650.

    CAS  PubMed  Google Scholar 

  142. Ray RM, Bhattacharya S, Johnson LR . Mdm2 inhibition induces apoptosis in p53 deficient human colon cancer cells by activating p73- and E2F1-mediated expression of PUMA and Siva-1. Apoptosis 2011; 16: 35–44.

    CAS  PubMed  Google Scholar 

  143. Kubo N, Okoshi R, Nakashima K, Shimozato O, Nakagawara A, Ozaki T . MDM2 promotes the proteasomal degradation of p73 through the interaction with Itch in HeLa cells. Biochem Biophys Res Commun 2010; 403: 405–411.

    CAS  PubMed  Google Scholar 

  144. Peschiaroli A, Scialpi F, Bernassola F, Pagano M, Melino G . The F-box protein FBXO45 promotes the proteasome-dependent degradation of p73. Oncogene 2009; 28: 3157–3166.

    CAS  PubMed  Google Scholar 

  145. Minty A, Dumont X, Kaghad M, Caput D . Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 2000; 275: 36316–36323.

    CAS  PubMed  Google Scholar 

  146. Munarriz E, Barcaroli D, Stephanou A, Townsend PA, Maisse C, Terrinoni A et al. PIAS-1 is a checkpoint regulator which affects exit from G1 and G2 by sumoylation of p73. Mol Cell Biol 2004; 24: 10593–10610.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Basu S, Totty NF, Irwin MS, Sudol M, Downward J . Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell 2003; 11: 11–23.

    CAS  PubMed  Google Scholar 

  148. Sang M, Ando K, Okoshi R, Koida N, Li Y, Zhu Y et al. Plk3 inhibits pro-apoptotic activity of p73 through physical interaction and phosphorylation. Genes Cells 2009; 14: 775–788.

    CAS  PubMed  Google Scholar 

  149. Koida N, Ozaki T, Yamamoto H, Ono S, Koda T, Ando K et al. Inhibitory role of Plk1 in the regulation of p73-dependent apoptosis through physical interaction and phosphorylation. J Biol Chem 2008; 283: 8555–8563.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Tyagi S, Bhui K, Singh R, Singh M, Raisuddin S, Shukla Y . Polo-like kinase1 (Plk1) knockdown enhances cisplatin chemosensitivity via up-regulation of p73alpha in p53 mutant human epidermoid squamous carcinoma cells. Biochem Pharmacol 2010; 80: 1326–1334.

    CAS  PubMed  Google Scholar 

  151. Li L, Wang M, Yu G, Chen P, Li H, Wei D et al. Overactivated neddylation pathway as a therapeutic target in lung cancer. J Natl Cancer Inst 2014; 106: dju083.

    PubMed  Google Scholar 

  152. Watson IR, Blanch A, Lin DC, Ohh M, Irwin MS . Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function. J Biol Chem 2006; 281: 34096–34103.

    CAS  PubMed  Google Scholar 

  153. Katayama H, Wang J, Treekitkarnmongkol W, Kawai H, Sasai K, Zhang H et al. Aurora kinase-A inactivates DNA damage-induced apoptosis and spindle assembly checkpoint response functions of p73. Cancer Cell 2012; 21: 196–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Di Vinci A, Sessa F, Casciano I, Banelli B, Franzi F, Brigati C et al. Different intracellular compartmentalization of TA and DeltaNp73 in non-small cell lung cancer. Int J Oncol 2009; 34: 449–456.

    CAS  PubMed  Google Scholar 

  155. Paliwal P, Radha V, Swarup G . Regulation of p73 by Hck through kinase-dependent and independent mechanisms. BMC Mol Biol 2007; 8: 45.

    PubMed  PubMed Central  Google Scholar 

  156. Blanch A, Robinson F, Watson IR, Cheng LS, Irwin MS . Eukaryotic translation elongation factor 1-alpha 1 inhibits p53 and p73 dependent apoptosis and chemotherapy sensitivity. PLoS One 2013; 8: e66436.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Potu H, Peterson LF, Pal A, Verhaegen M, Cao J, Talpaz M et al. Usp5 links suppression of p53 and FAS levels in melanoma to the BRAF pathway. Oncotarget 2014; 5: 5559–5569.

    PubMed  PubMed Central  Google Scholar 

  158. Daskalos A, Logotheti S, Markopoulou S, Xinarianos G, Gosney JR, Kastania AN et al. Global DNA hypomethylation-induced DeltaNp73 transcriptional activation in non-small cell lung cancer. Cancer Lett 2011; 300: 79–86.

    CAS  PubMed  Google Scholar 

  159. Casciano I, Banelli B, Croce M, Allemanni G, Ferrini S, Tonini GP et al. Role of methylation in the control of DeltaNp73 expression in neuroblastoma. Cell Death Differ 2002; 9: 343–345.

    CAS  PubMed  Google Scholar 

  160. Lai J, Nie W, Zhang W, Wang Y, Xie R, Wang Y et al. Transcriptional regulation of the p73 gene by Nrf-2 and promoter CpG methylation in human breast cancer. Oncotarget 2014; 5: 6909–6922.

    PubMed  PubMed Central  Google Scholar 

  161. Castillo J, Goni S, Latasa MU, Perugorria MJ, Calvo A, Muntane J et al. Amphiregulin induces the alternative splicing of p73 into its oncogenic isoform DeltaEx2p73 in human hepatocellular tumors. Gastroenterology 2009; 137: 1805–1815 e1801–e1804.

    CAS  PubMed  Google Scholar 

  162. Leung TH, Wong SC, Chan KK, Chan DW, Cheung AN, Ngan HY . The interaction between C35 and DeltaNp73 promotes chemo-resistance in ovarian cancer cells. Br J Cancer 2013; 109: 965–975.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Wong SW, Tiong KH, Kong WY, Yue YC, Chua CH, Lim JY et al. Rapamycin synergizes cisplatin sensitivity in basal-like breast cancer cells through up-regulation of p73. Breast Cancer Res Treat 2011; 128: 301–313.

    CAS  PubMed  Google Scholar 

  164. Adamovich Y, Adler J, Meltser V, Reuven N, Shaul Y . AMPK couples p73 with p53 in cell fate decision. Cell Death Differ 2014; 21: 1451–1459.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Hamilton G, Abraham AG, Morton J, Sampson O, Pefani DE, Khoronenkova S et al. AKT regulates NPM dependent ARF localization and p53mut stability in tumors. Oncotarget 2014; 5: 6142–6167.

    PubMed  PubMed Central  Google Scholar 

  166. Hong B, Prabhu VV, Zhang S, van den Heuvel AP, Dicker DT, Kopelovich L et al. Prodigiosin rescues deficient p53 signaling and antitumor effects via upregulating p73 and disrupting its interaction with mutant p53. Cancer Res 2014; 74: 1153–1165.

    CAS  PubMed  Google Scholar 

  167. Uppada SB, Erickson T, Wojdyla L, Moravec DN, Song Z, Cheng J et al. Novel delivery system for T-oligo using a nanocomplex formed with an alpha helical peptide for melanoma therapy. Int J Nanomedicine 2014; 9: 43–53.

    PubMed  Google Scholar 

  168. Emmrich S, Wang W, John K, Li W, Putzer BM . Antisense gapmers selectively suppress individual oncogenic p73 splice isoforms and inhibit tumor growth in vivo. Mol Cancer 2009; 8: 61.

    PubMed  PubMed Central  Google Scholar 

  169. Kravchenko JE, Ilyinskaya GV, Komarov PG, Agapova LS, Kochetkov DV, Strom E et al. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc Natl Acad Sci USA 2008; 105: 6302–6307.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Rokaeus N, Shen J, Eckhardt I, Bykov VJ, Wiman KG, Wilhelm MT . PRIMA-1(MET)/APR-246 targets mutant forms of p53 family members p63 and p73. Oncogene 2010; 29: 6442–6451.

    CAS  PubMed  Google Scholar 

  171. Saha MN, Jiang H, Yang Y, Reece D, Chang H . PRIMA-1Met/APR-246 displays high antitumor activity in multiple myeloma by induction of p73 and Noxa. Mol Cancer Ther 2013; 12: 2331–2341.

    CAS  PubMed  Google Scholar 

  172. Zheng T, Wang J, Song X, Meng X, Pan S, Jiang H et al. Nutlin-3 cooperates with doxorubicin to induce apoptosis of human hepatocellular carcinoma cells through p53 or p73 signaling pathways. J Cancer Res Clin Oncol 2010; 136: 1597–1604.

    CAS  PubMed  Google Scholar 

  173. Sampath D, Calin GA, Puduvalli VK, Gopisetty G, Taccioli C, Liu CG et al. Specific activation of microRNA106b enables the p73 apoptotic response in chronic lymphocytic leukemia by targeting the ubiquitin ligase Itch for degradation. Blood 2009; 113: 3744–3753.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Mancini M, Corradi V, Petta S, Barbieri E, Manetti F, Botta M et al. A new nonpeptidic inhibitor of 14-3-3 induces apoptotic cell death in chronic myeloid leukemia sensitive or resistant to imatinib. J Pharmacol Exp Ther 2011; 336: 596–604.

    CAS  PubMed  Google Scholar 

  175. Christopherson RI, Mactier S, Almazi JG, Kohnke PL, Best OG, Mulligan SP . Mechanisms of action of fludarabine nucleoside against human Raji lymphoma cells. Nucleosides Nucleotides Nucleic Acids 2014; 33: 375–383.

    CAS  PubMed  Google Scholar 

  176. Dar AA, Belkhiri A, Ecsedy J, Zaika A, El-Rifai W . Aurora kinase A inhibition leads to p73-dependent apoptosis in p53-deficient cancer cells. Cancer Res 2008; 68: 8998–9004.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Rosenbluth JM, Mays DJ, Jiang A, Shyr Y, Pietenpol JA . Differential regulation of the p73 cistrome by mammalian target of rapamycin reveals transcriptional programs of mesenchymal differentiation and tumorigenesis. Proc Natl Acad Sci USA 2011; 108: 2076–2081.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Tiwary R, Yu W, Sanders BG, Kline K . alpha-TEA cooperates with chemotherapeutic agents to induce apoptosis of p53 mutant, triple-negative human breast cancer cells via activating p73. Breast Cancer Res 2011; 13: R1.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Azmi AS, Ali S, Banerjee S, Bao B, Maitah MN, Padhye S et al. Network modeling of CDF treated pancreatic cancer cells reveals a novel c-myc-p73 dependent apoptotic mechanism. Am J Transl Res 2011; 3: 374–382.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Herzog A, Bian Y, Vander Broek R, Hall B, Coupar J, Cheng H et al. PI3K/mTOR inhibitor PF-04691502 antitumor activity is enhanced with induction of wild-type TP53 in human xenograft and murine knockout models of head and neck cancer. Clin Cancer Res 2013; 19: 3808–3819.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Das R, Bhattacharya K, Sarkar S, Samanta SK, Pal BC, Mandal C . Mahanine synergistically enhances cytotoxicity of 5-fluorouracil through ROS-mediated activation of PTEN and p53/p73 in colon carcinoma. Apoptosis 2014; 19: 149–164.

    CAS  PubMed  Google Scholar 

  182. Alonso R, Lopez-Guerra M, Upshaw R, Bantia S, Smal C, Bontemps F et al. Forodesine has high antitumor activity in chronic lymphocytic leukemia and activates p53-independent mitochondrial apoptosis by induction of p73 and BIM. Blood 2009; 114: 1563–1575.

    CAS  PubMed  Google Scholar 

  183. Lapalombella R, Andritsos L, Liu Q, May SE, Browning R, Pham LV et al. Lenalidomide treatment promotes CD154 expression on CLL cells and enhances production of antibodies by normal B cells through a PI3-kinase-dependent pathway. Blood 2010; 115: 2619–2629.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Raab MS, Breitkreutz I, Tonon G, Zhang J, Hayden PJ, Nguyen T et al. Targeting PKC: a novel role for beta-catenin in ER stress and apoptotic signaling. Blood 2009; 113: 1513–1521.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Alhosin M, Abusnina A, Achour M, Sharif T, Muller C, Peluso J et al. Induction of apoptosis by thymoquinone in lymphoblastic leukemia Jurkat cells is mediated by a p73-dependent pathway which targets the epigenetic integrator UHRF1. Biochem Pharmacol 2010; 79: 1251–1260.

    CAS  PubMed  Google Scholar 

  186. Alhosin M, Ibrahim A, Boukhari A, Sharif T, Gies JP, Auger C et al. Anti-neoplastic agent thymoquinone induces degradation of alpha and beta tubulin proteins in human cancer cells without affecting their level in normal human fibroblasts. Invest New Drugs 2012; 30: 1813–1819.

    CAS  PubMed  Google Scholar 

  187. Onoda C, Kuribayashi K, Nirasawa S, Tsuji N, Tanaka M, Kobayashi D et al. (−)-Epigallocatechin-3-gallate induces apoptosis in gastric cancer cell lines by down-regulating survivin expression. Int J Oncol 2011; 38: 1403–1408.

    CAS  PubMed  Google Scholar 

  188. Achour M, Mousli M, Alhosin M, Ibrahim A, Peluso J, Muller CD et al. Epigallocatechin-3-gallate up-regulates tumor suppressor gene expression via a reactive oxygen species-dependent down-regulation of UHRF1. Biochem Biophys Res Commun 2013; 430: 208–212.

    CAS  PubMed  Google Scholar 

  189. Stearns ME, Wang M . Synergistic effects of the green tea extract epigallocatechin-3-gallate and taxane in eradication of malignant human prostate tumors. Transl Oncol 2011; 4: 147–156.

    PubMed  PubMed Central  Google Scholar 

  190. Sharif T, Auger C, Alhosin M, Ebel C, Achour M, Etienne-Selloum N et al. Red wine polyphenols cause growth inhibition and apoptosis in acute lymphoblastic leukaemia cells by inducing a redox-sensitive up-regulation of p73 and down-regulation of UHRF1. Eur J Cancer 2010; 46: 983–994.

    CAS  PubMed  Google Scholar 

  191. Momeny M, Zakidizaji M, Ghasemi R, Dehpour AR, Rahimi-Balaei M, Abdolazimi Y et al. Arsenic trioxide induces apoptosis in NB-4, an acute promyelocytic leukemia cell line, through up-regulation of p73 via suppression of nuclear factor kappa B-mediated inhibition of p73 transcription and prevention of NF-kappaB-mediated induction of XIAP, cIAP2, BCL-XL and survivin. Med Oncol 2010; 27: 833–842.

    CAS  PubMed  Google Scholar 

  192. Zheng T, Yin D, Lu Z, Wang J, Li Y, Chen X et al. Nutlin-3 overcomes arsenic trioxide resistance and tumor metastasis mediated by mutant p53 in hepatocellular carcinoma. Mol Cancer 2014; 13: 133.

    PubMed  PubMed Central  Google Scholar 

  193. Puri N, Pitman RT, Mulnix RE, Erickson T, Iness AN, Vitali C et al. Non-small cell lung cancer is susceptible to induction of DNA damage responses and inhibition of angiogenesis by telomere overhang oligonucleotides. Cancer Lett 2014; 343: 14–23.

    CAS  PubMed  Google Scholar 

  194. Wojdyla L, Stone AL, Sethakorn N, Uppada SB, Devito JT, Bissonnette M et al. T-oligo as an anticancer agent in colorectal cancer. Biochem Biophys Res Commun 2014; 446: 596–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Wolter JK, Wolter NE, Blanch A, Partridge T, Cheng L, Morgenstern DA et al. Anti-tumor activity of the beta-adrenergic receptor antagonist propranolol in neuroblastoma. Oncotarget 2014; 5: 161–172.

    PubMed  Google Scholar 

  196. Park GB, Kim YS, Kim D, Kim S, Lee HK, Cho DH et al. Melphalan-induced apoptosis of EBV-transformed B cells through upregulation of TAp73 and XAF1 and nuclear import of XPA. J Immunol 2013; 191: 6281–6291.

    CAS  PubMed  Google Scholar 

  197. Decrion-Barthod AZ, Bosset M, Plissonnier ML, Marchini A, Nicolier M, Launay S et al. Sodium butyrate with UCN-01 has marked antitumour activity against cervical cancer cells. Anticancer Res 2010; 30: 4049–4061.

    CAS  PubMed  Google Scholar 

  198. Tebbi A, Guittet O, Cottet MH, Vesin MF, Lepoivre M . TAp73 induction by nitric oxide: regulation by checkpoint kinase 1 (CHK1) and protection against apoptosis. J Biol Chem 2011; 286: 7873–7884.

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Sooriakumaran P, Macanas-Pirard P, Bucca G, Henderson A, Langley SE, Laing RW et al. A gene expression profiling approach assessing celecoxib in a randomized controlled trial in prostate cancer. Cancer Genomics Proteomics 2009; 6: 93–99.

    CAS  PubMed  Google Scholar 

  200. Papoutsaki M, Lanza M, Marinari B, Nistico S, Moretti F, Levrero M et al. The p73 gene is an anti-tumoral target of the RARbeta/gamma-selective retinoid tazarotene. J Invest Dermatol 2004; 123: 1162–1168.

    CAS  PubMed  Google Scholar 

  201. Testoni B, Schinzari V, Guerrieri F, Gerbal-Chaloin S, Blandino G, Levrero M . p53-paralog DNp73 oncogene is repressed by IFNalpha/STAT2 through the recruitment of the Ezh2 polycomb group transcriptional repressor. Oncogene 2011; 30: 2670–2678.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the German Cancer Aid, Federal Ministry of Education and Research as part of the project eBio:SysMet and FORUN program of Rostock University Medical Center. We apologize to colleagues whose studies we did not cite owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B M Pützer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engelmann, D., Meier, C., Alla, V. et al. A balancing act: orchestrating amino-truncated and full-length p73 variants as decisive factors in cancer progression. Oncogene 34, 4287–4299 (2015). https://doi.org/10.1038/onc.2014.365

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.365

This article is cited by

Search

Quick links