Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Homeodomain-interacting protein kinase 2 regulates DNA damage response through interacting with heterochromatin protein 1γ

Abstract

Homeodomain-interacting protein kinase 2 (HIPK2) is a potential tumor suppressor that has a crucial role in the DNA damage response (DDR) by regulating cell-cycle checkpoint activation and apoptosis. However, it is unclear whether HIPK2 exerts distinct roles in DNA damage repair. The aim of this study was to identify novel target molecule(s) of HIPK2, which mediates HIPK2-dependent DNA damage repair. HIPK2-knockdown human colon cancer cells (HCT116) or hipk1/hipk2 double-deficient mouse embryonic fibroblasts could not remove histone H2A.X phosphorylated at Ser139 (γH2A.X) after irradiation with a sublethal dose (10 J/m2) of ultraviolet (UV)-C, resulting in apoptosis. Knockdown of HIPK2 in p53-null HCT116 cells similarly promoted the UV-C-induced γH2A.X accumulation and apoptosis. Proteomic analysis of HIPK2-associated proteins using liquid chromatography-tandem mass spectrometry identified heterochromatin protein 1γ (HP1γ) as a novel target for HIPK2. Immunoprecipitation experiments with HCT116 cells expressing FLAG-tagged HIPK2 and one of the HA-tagged HP1 family members demonstrated that HIPK2 specifically associated with HP1γ, but not with HP1α or HP1β, through its chromo-shadow domain. Mutation of the HP1box motif (883-PTVSV-887) within HIPK2 abolished the association. HP1γ knockdown also enhanced accumulation of γH2A.X and apoptosis after sublethal UV-C irradiation. In vitro kinase assay demonstrated an HP1γ-phosphorylating activity of HIPK2. Sublethal UV-C irradiation phosphorylated HP1γ. This phosphorylation was absent in endogenous HIPK2-silenced cells with HIPK2 3’UTR siRNA. Overexpression of FLAG-HIPK2, but not the HP1box-mutated or kinase-dead HIPK2 mutant, in the HIPK2-silenced cells increased HP1γ binding to trimethylated (Lys9) histone H3 (H3K9me3), rescued the UV-C-induced phosphorylation of HP1γ, triggered release of HP1γ from histone H3K9me3 and suppressed γH2A.X accumulation. Our results suggest that HIPK2-dependent phosphorylation of HP1γ may participate in the regulation of dynamic interaction between HP1γ and histone H3K9me3 to promote DNA damage repair. This HIPK2/HP1γ pathway may uncover a new functional aspect of HIPK2 as a tumor suppressor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Soria G, Polo SE, Almouzni G . Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol Cell 2012; 46: 722–734.

    Article  CAS  Google Scholar 

  2. Sombroek D, Hofmann TG . How cells switch HIPK2 on and off. Cell Death Differ 2009; 16: 187–194.

    Article  CAS  Google Scholar 

  3. Puca R, Nardinocchi L, Givol D, D'Orazi G . Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene 2010; 29: 4378–4387.

    Article  CAS  Google Scholar 

  4. Winter M, Sombroek D, Dauth I, Moehlenbrink J, Scheuermann K, Crone J et al. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Nat Cell Biol 2008; 10: 812–824.

    Article  CAS  Google Scholar 

  5. Gresko E, Roscic A, Ritterhoff S, Vichalkovski A, del Sal G, Schmitz ML . Autoregulatory control of the p53 response by caspase-mediated processing of HIPK2. EMBO J 2006; 25: 1883–1894.

    Article  CAS  Google Scholar 

  6. Saul VV, de la Vega L, Milanovic M, Kruger M, Braun T, Fritz-Wolf K et al. HIPK2 kinase activity depends on cis-autophosphorylation of its activation loop. J Mol Cell Biol 2013; 5: 27–38.

    Article  CAS  Google Scholar 

  7. D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser46 and mediates apoptosis. Nat Cell Biol 2002; 4: 11–19.

    Article  CAS  Google Scholar 

  8. Hofmann TG, Moller A, Sirma H, Zentgraf H, Taya Y, Droge W et al. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 2002; 4: 1–10.

    Article  CAS  Google Scholar 

  9. Hofmann TG, Glas C, Bitomsky N . HIPK2: a tumour suppressor that controls DNA damage-induced cell fate and cytokinesis. Bioessays 2013; 35: 55–64.

    Article  CAS  Google Scholar 

  10. Di Stefano V, Soddu S, Sacchi A, D'Orazi G . HIPK2 contributes to PCAF-mediated p53 acetylation and selective transactivation of p21Waf1 after nonapoptotic DNA damage. Oncogene 2005; 24: 5431–5442.

    Article  CAS  Google Scholar 

  11. Papamichos-Chronakis M, Peterson CL . Chromatin and the genome integrity network. Nat Rev Genet 2013; 14: 62–75.

    Article  CAS  Google Scholar 

  12. Price BD, D'Andrea AD . Chromatin remodeling at DNA double-strand breaks. Cell 2013; 152: 1344–1354.

    Article  CAS  Google Scholar 

  13. Kwon SH, Workman JL . The heterochromatin protein 1 (HP1) family: put away a bias toward HP1. Mol Cells 2008; 26: 217–227.

    CAS  Google Scholar 

  14. Lomberk G, Wallrath L, Urrutia R . The heterochromatin protein 1 family. Genome Biol 2006; 7: 228.

    Article  Google Scholar 

  15. Nielsen AL, Oulad-Abdelghani M, Ortiz JA, Remboutsika E, Chambon P, Losson R . Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol Cell 2001; 7: 729–739.

    Article  CAS  Google Scholar 

  16. Kwon SH, Workman JL . The changing faces of HP1: From heterochromatin formation and gene silencing to euchromatic gene expression: HP1 acts as a positive regulator of transcription. Bioessays 2011; 33: 280–289.

    Article  CAS  Google Scholar 

  17. Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR . HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature 2008; 453: 682–686.

    Article  CAS  Google Scholar 

  18. Lee YH, Kuo CY, Stark JM, Shih HM, Ann DK . HP1 promotes tumor suppressor BRCA1 functions during the DNA damage response. Nucleic Acids Res 2013; 41: 5784–5798.

    Article  CAS  Google Scholar 

  19. Luijsterburg MS, Dinant C, Lans H, Stap J, Wiernasz E, Lagerwerf S et al. Heterochromatin protein 1 is recruited to various types of DNA damage. J Cell Biol 2009; 185: 577–586.

    Article  CAS  Google Scholar 

  20. Zarebski M, Wiernasz E, Dobrucki JW . Recruitment of heterochromatin protein 1 to DNA repair sites. Cytometry A 2009; 75: 619–625.

    Article  Google Scholar 

  21. Kurokawa K, Akaike Y, Masuda K, Kuwano Y, Nishida K, Yamagishi N et al. Downregulation of serine/arginine-rich splicing factor 3 induces G1 cell cycle arrest and apoptosis in colon cancer cells. Oncogene 2014; 33: 1407–1417.

    Article  CAS  Google Scholar 

  22. Hailemariam K, Iwasaki K, Huang BW, Sakamoto K, Tsuji Y . Transcriptional regulation of ferritin and antioxidant genes by HIPK2 under genotoxic stress. J Cell Sci 2010; 123: 3863–3871.

    Article  CAS  Google Scholar 

  23. Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP . Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010; 2010: 592980.

    Article  Google Scholar 

  24. Lee DH, Chowdhury D . What goes on must come off: phosphatases gate-crash the DNA damage response. Trends Biochem Sci 2011; 36: 569–577.

    Article  CAS  Google Scholar 

  25. Mah LJ, El-Osta A, Karagiannis TC . gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 2010; 24: 679–686.

    Article  CAS  Google Scholar 

  26. Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA et al. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 2010; 9: 662–669.

    Article  Google Scholar 

  27. Kim YH, Choi CY, Lee SJ, Conti MA, Kim Y . Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors. J Biol Chem 1998; 273: 25875–25879.

    Article  CAS  Google Scholar 

  28. Isono K, Nemoto K, Li Y, Takada Y, Suzuki R, Katsuki M et al. Overlapping roles for homeodomain-interacting protein kinases hipk1 and hipk2 in the mediation of cell growth in response to morphogenetic and genotoxic signals. Mol Cell Biol 2006; 26: 2758–2771.

    Article  CAS  Google Scholar 

  29. Rinaldo C, Prodosmo A, Siepi F, Soddu S . HIPK2: a multitalented partner for transcription factors in DNA damage response and development. Biochem Cell Biol 2007; 85: 411–418.

    Article  CAS  Google Scholar 

  30. Smothers JF, Henikoff S . The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr Biol 2000; 10: 27–30.

    Article  CAS  Google Scholar 

  31. LeRoy G, Weston JT, Zee BM, Young NL, Plazas-Mayorca MD, Garcia BA . Heterochromatin protein 1 is extensively decorated with histone code-like post-translational modifications. Mol Cell Proteomics 2009; 8: 2432–2442.

    Article  CAS  Google Scholar 

  32. Yamada D, Perez-Torrado R, Filion G, Caly M, Jammart B, Devignot V et al. The human protein kinase HIPK2 phosphorylates and downregulates the methyl-binding transcription factor ZBTB4. Oncogene 2009; 28: 2535–2544.

    Article  CAS  Google Scholar 

  33. Wei G, Ku S, Ma GK, Saito S, Tang AA, Zhang J et al. HIPK2 represses beta-catenin-mediated transcription, epidermal stem cell expansion, and skin tumorigenesis. Proc Natl Acad Sci USA 2007; 104: 13040–13045.

    Article  CAS  Google Scholar 

  34. Rinaldo C, Moncada A, Gradi A, Ciuffini L, D'Eliseo D, Siepi F et al. HIPK2 controls cytokinesis and prevents tetraploidization by phosphorylating histone H2B at the midbody. Mol Cell 2012; 47: 87–98.

    Article  CAS  Google Scholar 

  35. Lomberk G, Bensi D, Fernandez-Zapico ME, Urrutia R . Evidence for the existence of an HP1-mediated subcode within the histone code. Nat Cell Biol 2006; 8: 407–415.

    Article  CAS  Google Scholar 

  36. Grzenda A, Leonard P, Seo S, Mathison AJ, Urrutia G, Calvo E et al. Functional impact of Aurora A-mediated phosphorylation of HP1γ at serine 83 during cell cycle progression. Epigenetics Chromatin 2013; 6: 21.

    Article  CAS  Google Scholar 

  37. Zhang Q, Yoshimatsu Y, Hildebrand J, Frisch SM, Goodman RH . Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP. Cell 2003; 115: 177–186.

    Article  CAS  Google Scholar 

  38. Nardinocchi L, Puca R, Sacchi A, D'Orazi G . HIPK2 knock-down compromises tumor cell efficiency to repair damaged DNA. Biochem Biophys Res Commun 2007; 361: 249–255.

    Article  CAS  Google Scholar 

  39. Pontarin G, Ferraro P, Bee L, Reichard P, Bianchi V . Mammalian ribonucleotide reductase subunit p53R2 is required for mitochondrial DNA replication and DNA repair in quiescent cells. Proc Natl Acad Sci USA 2012; 109: 13302–13307.

    Article  CAS  Google Scholar 

  40. Yamaguchi T, Matsuda K, Sagiya Y, Iwadate M, Fujino MA, Nakamura Y et al. p53R2-dependent pathway for DNA synthesis in a p53-regulated cell cycle checkpoint. Cancer Res 2001; 61: 8256–8262.

    CAS  Google Scholar 

  41. Choi DW, Na W, Kabir MH, Yi E, Kwon S, Yeom J et al. WIP1, a homeostatic regulator of the DNA damage response, is targeted by HIPK2 for phosphorylation and degradation. Mol Cell 2013; 51: 374–385.

    Article  CAS  Google Scholar 

  42. Baldeyron C, Soria G, Roche D, Cook AJ, Almouzni G . HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J Cell Biol 2011; 193: 81–95.

    Article  CAS  Google Scholar 

  43. Dinant C, Luijsterburg MS . The emerging role of HP1 in the DNA damage response. Mol Cell Biol 2009; 29: 6335–6340.

    Article  CAS  Google Scholar 

  44. Minc E, Courvalin JC, Buendia B . HP1gamma associates with euchromatin and heterochromatin in mammalian nuclei and chromosomes. Cytogenet Cell Genet 2000; 90: 279–284.

    Article  CAS  Google Scholar 

  45. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 2008; 31: 167–177.

    Article  CAS  Google Scholar 

  46. Kim JA, Kruhlak M, Dotiwala F, Nussenzweig A, Haber JE . Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. J Cell Biol 2007; 178: 209–218.

    Article  CAS  Google Scholar 

  47. Noon AT, Shibata A, Rief N, Lobrich M, Stewart GS, Jeggo PA et al. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat Cell Biol 2010; 12: 177–184.

    Article  CAS  Google Scholar 

  48. Chiolo I, Minoda A, Colmenares SU, Polyzos A, Costes SV, Karpen GH . Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 2011; 144: 732–744.

    Article  CAS  Google Scholar 

  49. Jakob B, Splinter J, Conrad S, Voss KO, Zink D, Durante M et al. DNA double-strand breaks in heterochromatin elicit fast repair protein recruitment, histone H2AX phosphorylation and relocation to euchromatin. Nucleic Acids Res 2011; 39: 6489–6499.

    Article  CAS  Google Scholar 

  50. Cann KL, Dellaire G . Heterochromatin and the DNA damage response: the need to relax. Biochem Cell Biol 2011; 89: 45–60.

    Article  CAS  Google Scholar 

  51. Hiragami-Hamada K, Shinmyozu K, Hamada D, Tatsu Y, Uegaki K, Fujiwara S et al. N-terminal phosphorylation of HP1{alpha} promotes its chromatin binding. Mol Cell Biol 2011; 31: 1186–1200.

    Article  CAS  Google Scholar 

  52. Kuwano Y, Pullmann R Jr., Marasa BS, Abdelmohsen K, Lee EK, Yang X et al. NF90 selectively represses the translation of target mRNAs bearing an AU-rich signature motif. Nucleic Acids Res 2010; 38: 225–238.

    Article  CAS  Google Scholar 

  53. Mund A, Schubert T, Staege H, Kinkley S, Reumann K, Kriegs M et al. SPOC1 modulates DNA repair by regulating key determinants of chromatin compaction and DNA damage response. Nucleic Acids Res 2012; 40: 11363–11379.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 24-8354 (to YA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Rokutan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akaike, Y., Kuwano, Y., Nishida, K. et al. Homeodomain-interacting protein kinase 2 regulates DNA damage response through interacting with heterochromatin protein 1γ. Oncogene 34, 3463–3473 (2015). https://doi.org/10.1038/onc.2014.278

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.278

This article is cited by

Search

Quick links