Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of p21 by TWIST2 contributes to its tumor-suppressor function in human acute myeloid leukemia

Abstract

TWIST2 has a dual function in tumors. Its implication in the initiation and metastasis of various solid tumors is well established, and its tumor-suppressor role in murine osteosarcoma cells has been reported recently. However, the function of TWIST2 and its underlying mechanisms in human normal and malignant hematopoiesis remain unclear. In the present study, we found that TWIST2 directly regulated p21 in human hematopoietic cells and whose silence promoted cell proliferation and cell cycle progression. Hypermethylation of TWIST2 occurred to 23 out of the 75 adult acute myeloid leukemia (AML) patients and resulted in the impaired expression of both TWIST2 and p21. Conversely, TWIST2 overexpression inhibited the growth of AML cells partially through its direct activation of p21 with intact HLH (helix-loop-helix) domain. The microarray data and gene expression validation showed that TWIST2 was sufficient to activate known tumor-suppressor genes, whereas suppress known oncogenes, which further supported its inhibitory effect against AML cells. Taken together, our data have identified a novel TWIST2-p21 axis that modulates the cell cycle of both normal and leukemic cells and demonstrated that the direct regulation of p21 by TWIST2 has a role in its tumor-suppressor function in AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Thisse B, Stoetzel C, Gorostiza-Thisse C, Perrin-Schmitt F . Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO J 1988; 7: 2175–2183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Franco HL, Casasnovas J, Rodríguez-Medina JR, Cadilla CL . Redundant or separate entities?-roles of Twist1 and Twist2 as molecular switches during gene transcription. Nucleic Acids Res 2011; 39: 1177–1186.

    Article  CAS  PubMed  Google Scholar 

  3. Sandmann T, Girardot C, Brehme M, Tongprasit W, Stolc V, Furlong EE . A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes Dev 2007; 21: 436–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spicer DB, Rhee J, Cheung WL, Lassar AB . Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist. Science 1996; 272: 1476–1480.

    Article  CAS  PubMed  Google Scholar 

  5. Gong XQ, Li L . Dermo-1, a multifunctional basic helix-loop-helix protein, represses MyoD transactivation via the HLH domain, MEF2 interaction, and chromatin deacetylation. J Biol Chem 2002; 277: 12310–12317.

    Article  CAS  PubMed  Google Scholar 

  6. Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N et al. A twist code determines the onset of osteoblast differentiation. Dev Cell 2004; 6: 423–435.

    Article  CAS  PubMed  Google Scholar 

  7. Isenmann S, Arthur A, Zannettino AC, Turner JL, Shi S, Glackin CA et al. TWIST family of basic helix-loop-helix transcription factors mediate human mesenchymal stem cell growth and commitment. Stem Cells 2009; 27: 2457–2468.

    Article  CAS  PubMed  Google Scholar 

  8. Yang DC, Yang MH, Tsai CC, Huang TF, Chen YH, Hung SC . Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST. PLoS ONE 2011; 6: e23965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maestro R, Dei Tos AP, Hamamori Y, Krasnokutsky S, Sartorelli V, Kedes L et al. Twist is a potential oncogene that inhibits apoptosis. Genes Dev 1999; 13: 2207–2217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ansieau S, Morel AP, Hinkal G, Bastid J, Puisieux A . TWISTing an embryonic transcription factor into an oncoprotein. Oncogene 2010; 29: 3173–3184.

    Article  CAS  PubMed  Google Scholar 

  12. Qin Q, Xu Y, He T, Qin C, Xu J . Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res 2012; 22: 90–106.

    Article  CAS  PubMed  Google Scholar 

  13. Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 2008; 14: 79–89.

    Article  CAS  PubMed  Google Scholar 

  14. Cakouros D, Isenmann S, Cooper L, Zannettino A, Anderson P, Glackin C et al. Twist-1 induces Ezh2 recruitment regulating histone methylation along the Ink4A/Arf locus in mesenchymal stem cells. Mol Cell Biol 2012; 32: 1433–1441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fang X, Cai Y, Liu J, Wang Z, Wu Q, Zhang Z et al. Twist2 contributes to breast cancer progression by promoting an epithelial-mesenchymal transition and cancer stem-like cell self-renewal. Oncogene 2011; 30: 4707–4720.

    Article  CAS  PubMed  Google Scholar 

  16. Ishikawa T, Shimizu T, Ueki A, Yamaguchi SI, Onishi N, Sugihara E et al. Twist2 functions as a tumor suppressor in murine osteosarcoma cells. Cancer Sci 2013; 104: 880–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thathia SH, Ferguson S, Gautrey HE, van Otterdijk SD, Hili M, Rand V et al. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity. Haematologica 2012; 97: 371–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sharabi AB, Aldrich M, Sosic D, Olson EN, Friedman AD, Lee SH et al. Twist-2 controls myeloid lineage development and function. PLoS Biol 2008; 6: e316.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Raval A, Lucas DM, Matkovic JJ, Bennett KL, Liyanarachchi S, Young DC et al. TWIST2 demonstrates differential methylation in immunoglobulin variable heavy chain mutated and unmutated chronic lymphocytic leukemia. J Clin Oncol 2005; 23: 3877–3885.

    Article  CAS  PubMed  Google Scholar 

  20. Šošić D, Richardson JA, Yu K, Ornitz DM, Olson EN . Twist regulates cytokine gene expression through a negative feedback loop that represses NF-kappaB activity. Cell 2003; 112: 169–180.

    Article  PubMed  Google Scholar 

  21. Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, Kidani A et al. Twist and p53 reciprocally regulate target genes via direct interaction. Oncogene 2008; 27: 5543–5553.

    Article  CAS  PubMed  Google Scholar 

  22. Piccinin S, Tonin E, Sessa S, Demontis S, Rossi S, Pecciarini L et al. A ‘twist box’ code of p53 inactivation: twist box: p53 interaction promotes p53 degradation. Cancer Cell 2012; 22: 404–415.

    Article  CAS  PubMed  Google Scholar 

  23. Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH . Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 2007; 67: 1979–1987.

    Article  CAS  PubMed  Google Scholar 

  24. Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, Kidani A et al. Twist promotes tumor cell growth through YB-1 expression. Cancer Res 2008; 68: 98–105.

    Article  CAS  PubMed  Google Scholar 

  25. Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH et al. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 2010; 12: 982–992.

    Article  PubMed  Google Scholar 

  26. Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B . Tumour-suppressor activity of H19 RNA. Nature 1993; 365: 764–767.

    Article  CAS  PubMed  Google Scholar 

  27. Duriez C, Falette N, Audoynaud C, Moyret-Lalle C, Bensaad K, Courtois S et al. The human BTG2/TIS21/PC3 gene: genomic structure, transcriptional regulation and evaluation as a candidate tumor suppressor gene. Gene 2002; 282: 207–214.

    Article  CAS  PubMed  Google Scholar 

  28. Sakamuro D, Elliott KJ, Wechsler-Reya R, Prendergast GC . BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat Genet 1996; 14: 69–77.

    Article  CAS  PubMed  Google Scholar 

  29. Kennah E, Ringrose A, Zhou LL, Esmailzadeh S, Qian H, Su MW et al. Identification of tyrosine kinase, HCK, and tumor suppressor, BIN1, as potential mediators of AHI-1 oncogene in primary and transformed CTCL cells. Blood 2009; 113: 4646–4655.

    Article  CAS  PubMed  Google Scholar 

  30. Narla G, Heath KE, Reeves HL, Li D, Giono LE, Kimmelman AC et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 2001; 294: 2563–2566.

    Article  CAS  PubMed  Google Scholar 

  31. Ueda K, Arakawa H, Nakamura Y . Dual-sepecificity phosphatase 5 (DUSP5) as a direct transcriptional target of tumor suppressor p53. Oncogene 2003; 22: 5586–5591.

    Article  CAS  PubMed  Google Scholar 

  32. Kawagoe H, Kandilci A, Kranenburg TA, Grosveld GC . Overexpression of N-Myc rapidly causes acute myeloid leukemia in mice. Cancer Res 2007; 67: 10677–10685.

    Article  CAS  PubMed  Google Scholar 

  33. Nagel S, Burek C, Venturini L, Scherr M, Quentmeier H, Meyer C et al. Comprehensive analysis of homeobox genes in Hodgkin lymphoma cell lines identifies dysregulated expression of HOXB9 mediated via ERK5 signaling and BMI1. Blood 2007; 109: 3015–3023.

    CAS  PubMed  Google Scholar 

  34. Yin B, Delwel R, Valk PJ, Wallace MR, Loh ML, Shannon KM et al. A retroviral mutagenesis screen reveals strong cooperation between Bcl11a overexpression and loss of the Nf1 tumor suppressor gene. Blood 2009; 113: 1075–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 2011; 17: 1086–1093.

    Article  CAS  PubMed  Google Scholar 

  36. Liu JH, Yen CC, Lin YC, Gau JP, Yang MH, Chao TC et al. Overexpression of cyclin D1 in accelerated-phase chronic myeloid leukemia. Leuk Lymphoma 2004; 45: 2419–2425.

    Article  CAS  PubMed  Google Scholar 

  37. Wang M, Sun L, Qian J, Han X, Zhang L, Lin P et al. Cyclin D1 as a universally expressed mantle cell lymphoma-associated tumor antigen for immunotherapy. Leukemia 2009; 23: 1320–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shivdasani RA, Mayer EL, Orkin SH . Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 1995; 373: 432–434.

    Article  CAS  PubMed  Google Scholar 

  39. Capron C, Lécluse Y, Kaushik AL, Foudi A, Lacout C, Sekkai D et al. The SCL relative LYL-1 is required for fetal and adult hematopoietic stem cell function and B-cell differentiation. Blood 2006; 107: 4678–4686.

    Article  CAS  PubMed  Google Scholar 

  40. Kee BL . E and ID proteins branch out. Nat Rev Immunol 2009; 9: 175–184.

    Article  CAS  PubMed  Google Scholar 

  41. Souroullas GP, Salmon JM, Sablitzky F, Curtis DJ, Goodell MA . Adult hematopoietic stem and progenitor cells require either Lyl1 or Scl for survival. Cell Stem Cell 2009; 4: 180–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Aplan PD, Lombardi DP, Reaman GH, Sather HN, Hammond GD, Kirsch IR . Involvement of the putative hematopoietic transcription factor SCL in T-cell acute lymphoblastic leukemia. Blood 1992; 79: 1327–1333.

    CAS  PubMed  Google Scholar 

  43. Meng YS, Khoury H, Dick JE, Minden MD . Oncogenic potential of the transcription factor LYL1 in acute myeloblastic leukemia. Leukemia 2005; 19: 1941–1947.

    Article  CAS  PubMed  Google Scholar 

  44. Ko J, Patel N, Ikawa T, Kawamoto H, Frank O, Rivera RR et al. Suppression of E-protein activity interferes with the development of BCR-ABL-mediated myeloproliferative disease. Proc Natl Acad Sci USA 2008; 105: 12967–12972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharif MN, Sosic D, Rothlin CV, Kelly E, Lemke G, Olson EN et al. Twist mediates suppression of inflammation by type I IFNs and Axl. J Exp Med 2006; 203: 1891–1901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cosset E, Hamdan G, Jeanpierre S, Voeltzel T, Sagorny K, Hayette S et al. Deregulation of TWIST-1 in the CD34+ compartment represents a novel prognostic factor in chronic myeloid leukemia. Blood 2011; 117: 1673–1676.

    Article  CAS  PubMed  Google Scholar 

  47. Li X, Marcondes AM, Gooley TA, Deeg HJ . The helix-loop-helix transcription factor TWIST is dysregulated in myelodysplastic syndromes. Blood 2010; 116: 2304–2314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li X, Xu F, Chang C, Byon J, Papayannopoulou T, Deeg HJ et al. Transcriptional regulation of miR-10a/b by TWIST-1 in myelodysplastic syndromes. Haematologica 2013; 98: 414–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim MS, Kim GM, Choi YJ, Kim HJ, Kim YJ, Jin W TrkC promotes survival and growth of leukemia cells through Akt-mTOR-Dependent Up-Regulation of PLK-1 and Twist-1. Mol Cells 2013; 36: 177–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. el Ghouzzi V, Le Merrer M, Perrin-Schmitt F, Lajeunie E, Benit P, Renier D et al. Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat Genet 1997; 15: 42–46.

    Article  CAS  PubMed  Google Scholar 

  51. Howard TD, Paznekas WA, Green ED, Chiang LC, Ma N, Ortiz de Luna RI et al. Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nat Genet 1997; 15: 36–41.

    Article  PubMed  Google Scholar 

  52. Tukel T, Šošić D, Al-Gazali LI, Erazo M, Casasnovas J, Franco HL et al. Homozygous nonsense mutations in TWIST2 cause Setleis syndrome. Am J Hum Genet 2010; 87: 289–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP . Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011; 27: 1739–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhou H, Ge Y, Sun L, Ma W, Wu J, Zhang X et al. Growth arrest specific 2 is up-regulated in chronic myeloid leukemia cells and required for their growth. PLoS ONE 2014; 9: e86195.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang W, Liu J, Tabata Y, Meng J, Xu H . The effect of serum in culture on RNAi efficacy through modulation of polyplexes size. Biomaterials 2014; 35: 567–577.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang W, Gao Y, Li P, Shi Z, Guo T, Li F et al. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res 2014; 24: 331–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (no. 31170755), National Key Scientific Project of China (973 Program no. 2011CB933501), Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP, no. 20113201120017), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Jiangsu Province’s Key Medical Center (ZX201102) and National Public Health Grand Research Foundation (No.201202017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D Wu or Y Zhao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ma, W., Cui, J. et al. Regulation of p21 by TWIST2 contributes to its tumor-suppressor function in human acute myeloid leukemia. Oncogene 34, 3000–3010 (2015). https://doi.org/10.1038/onc.2014.241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.241

This article is cited by

Search

Quick links