Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Phosphorylation of Dok1 by Abl family kinases inhibits CrkI transforming activity

Subjects

Abstract

The Crk SH2/SH3 adaptor and the Abl nonreceptor tyrosine kinase were first identified as oncoproteins, and both can induce tumorigenesis when overexpressed or mutationally activated. We previously reported the surprising finding that inhibition or knockdown of Abl family kinases enhanced transformation of mouse fibroblasts by CrkI. Abl family inhibitors are currently used or are being tested for treatment of human malignancies, and our finding raised concerns that such inhibitors might actually promote the growth of tumors overexpressing CrkI. Here, we identify the Dok1 adaptor as the key effector for the enhancement of CrkI transformation by Abl inhibition. We show that phosphorylation of tyrosines 295 and 361 of Dok1 by Abl family kinases suppresses CrkI transforming activity, and that upon phosphorylation these tyrosines bind the SH2 domains of the Ras inhibitor p120 RasGAP. Knockdown of RasGAP resulted in a similar enhancement of CrkI transformation, consistent with a critical role for Ras activity. Imaging studies using a FRET sensor of Ras activation revealed alterations in the localization of activated Ras in CrkI-transformed cells. Our results support a model in which Dok1 phosphorylation normally suppresses localized Ras pathway activity in Crk-transformed cells via recruitment and/or activation of RasGAP, and that preventing this negative feedback mechanism by inhibiting Abl family kinases leads to enhanced transformation by Crk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Mayer BJ, Hamaguchi M, Hanafusa H . A novel viral oncogene with structural similarity to phospholipase C. Nature 1988; 332: 272–275.

    Article  CAS  PubMed  Google Scholar 

  2. Matsuda M, Tanaka S, Nagata S, Kojima A, Kurata T, Shibuya M . Two species of human CRK cDNA encode proteins with distinct biological activities. Mol Cell Biol 1992; 12: 3482–3489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. ten Hoeve J, Morris C, Heisterkamp N, Groffen J . Isolation and chromosomal localization of CRKL, a human crk-like gene. Oncogene 1993; 8: 2469–2474.

    CAS  PubMed  Google Scholar 

  4. Reichman CT, Mayer BJ, Keshav S, Hanafusa H . The product of the cellular crk gene consists primarily of SH2 and SH3 regions. Cell Growth Differ 1992; 3: 451–460.

    CAS  PubMed  Google Scholar 

  5. Feller SM, Knudsen B, Hanafusa H . c-Abl kinase regulates the protein binding activity of c-Crk. EMBO J 1994; 13: 2341–2351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sriram G, Birge RB . Emerging roles for crk in human cancer. Genes Cancer 2010; 1: 1132–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller CT, Chen G, Gharib TG, Wang H, Thomas DG, Misek DE et al. Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene 2003; 22: 7950–7957.

    Article  PubMed  Google Scholar 

  8. Takino T, Nakada M, Miyamori H, Yamashita J, Yamada KM, Sato H . CrkI adapter protein modulates cell migration and invasion in glioblastoma. Cancer Res 2003; 63: 2335–2337.

    CAS  PubMed  Google Scholar 

  9. Rodrigues SP, Fathers KE, Chan G, Zuo D, Halwani F, Meterissian S et al. CrkI and CrkII function as key signaling integrators for migration and invasion of cancer cells. Mol Cancer Res 2005; 3: 183–194.

    CAS  PubMed  Google Scholar 

  10. Linghu H, Tsuda M, Makino Y, Sakai M, Watanabe T, Ichihara S et al. Involvement of adaptor protein Crk in malignant feature of human ovarian cancer cell line MCAS. Oncogene 2006; 25: 3547–3556.

    Article  CAS  PubMed  Google Scholar 

  11. Zheng J, Machida K, Antoku S, Ng KY, Claffey KP, Mayer BJ . Proteins that bind the Src homology 3 domain of CrkI have distinct roles in Crk transformation. Oncogene 2010; 29: 6378–6389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bell ES, Park M . Models of crk adaptor proteins in cancer. Genes Cancer 2012; 3: 341–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mayer BJ, Hanafusa H . Mutagenic analysis of the v-crk oncogene: requirement for SH2 and SH3 domains and correlation between increased cellular phosphotyrosine and transformation. J Virol 1990; 64: 3581–3589.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG et al. SH2 domains recognize specific phosphopeptide sequences. Cell 1993; 72: 767–778.

    Article  CAS  PubMed  Google Scholar 

  15. Birge RB, Fajardo JE, Reichman C, Shoelson SE, Songyang Z, Cantley LC et al. Identification and characterization of a high-affinity interaction between v-Crk and tyrosine-phosphorylated paxillin in CT10-transformed fibroblasts. Mol Cell Biol 1993; 13: 4648–4656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sakai R, Iwamatsu A, Hirano N, Ogawa S, Tanaka T, Mano H et al. A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner. EMBO J 1994; 13: 3748–3756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Knudsen BS, Feller SM, Hanafusa H . Four proline-rich sequences of the guanine-nucleotide exchange factor C3G bind with unique specificity to the first Src homology 3 domain of Crk. J Biol Chem 1994; 269: 32781–32787.

    CAS  PubMed  Google Scholar 

  18. Tanaka S, Morishita T, Hashimoto Y, Hattori S, Nakamura S, Shibuya M et al. C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins. Proc Natl Acad Sci USA 1994; 91: 3443–3447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ren R, Ye ZS, Baltimore D . Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev 1994; 8: 783–795.

    Article  CAS  PubMed  Google Scholar 

  20. Wang B, Mysliwiec T, Feller SM, Knudsen B, Hanafusa H, Kruh GD . Proline-rich sequences mediate the interaction of the Arg protein tyrosine kinase with Crk. Oncogene 1996; 13: 1379–1385.

    CAS  PubMed  Google Scholar 

  21. Matsuda M, Hashimoto Y, Muroya K, Hasegawa H, Kurata T, Tanaka S et al. CRK protein binds to two guanine nucleotide-releasing proteins for the Ras family and modulates nerve growth factor-induced activation of Ras in PC12 cells. Mol Cell Biol 1994; 14: 5495–5500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hasegawa H, Kiyokawa E, Tanaka S, Nagashima K, Gotoh N, Shibuya M et al. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol Cell Biol 1996; 16: 1770–1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abelson HT, Rabstein LS . Lymphosarcoma: virus-induced thymic-independent disease in mice. Cancer Res 1970; 30: 2213–2222.

    CAS  PubMed  Google Scholar 

  24. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D . The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 1986; 233: 212–214.

    Article  CAS  PubMed  Google Scholar 

  25. Apperley JF, Gardembas M, Melo JV, Russell-Jones R, Bain BJ, Baxter EJ et al. Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. New Engl J Med 2002; 347: 481–487.

    Article  CAS  PubMed  Google Scholar 

  26. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. New Engl J Med 2003; 348: 1201–1214.

    Article  CAS  PubMed  Google Scholar 

  27. Akin C, Fumo G, Yavuz AS, Lipsky PE, Neckers L, Metcalfe DD . A novel form of mastocytosis associated with a transmembrane c-kit mutation and response to imatinib. Blood 2004; 103: 3222–3225.

    Article  CAS  PubMed  Google Scholar 

  28. Hughes TP, Saglio G, Kantarjian HM, Guilhot F, Niederwieser D, Rosti G et al. Early molecular response predicts outcomes in patients with chronic myeloid leukemia in chronic phase treated with frontline nilotinib or imatinib. Blood 2014; 123: 1353–1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reichardt P, Reichardt A, Pink D . Molecular targeted therapy of gastrointestinal stromal tumors. Curr Cancer Drug Targets 2011; 11: 688–697.

    Article  CAS  PubMed  Google Scholar 

  30. Ashman LK, Griffith R . Therapeutic targeting of c-KIT in cancer. Expert Opin Investig Drugs 2013; 22: 103–115.

    Article  CAS  PubMed  Google Scholar 

  31. Yamanashi Y, Baltimore D . Identification of the Abl- and rasGAP-associated 62 kDa protein as a docking protein, Dok. Cell 1997; 88: 205–211.

    Article  CAS  PubMed  Google Scholar 

  32. Carpino N, Wisniewski D, Strife A, Marshak D, Kobayashi R, Stillman B et al. p62(dok): a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells. Cell 1997; 88: 197–204.

    Article  CAS  PubMed  Google Scholar 

  33. Mashima R, Hishida Y, Tezuka T, Yamanashi Y . The roles of Dok family adapters in immunoreceptor signaling. Immunol Rev 2009; 232: 273–285.

    Article  CAS  PubMed  Google Scholar 

  34. Yamanashi Y, Tamura T, Kanamori T, Yamane H, Nariuchi H, Yamamoto T et al. Role of the rasGAP-associated docking protein p62(dok) in negative regulation of B cell receptor-mediated signaling. Genes Dev 2000; 14: 11–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yasuda T, Bundo K, Hino A, Honda K, Inoue A, Shirakata M et al. Dok-1 and Dok-2 are negative regulators of T cell receptor signaling. Int Immunol 2007; 19: 487–495.

    Article  CAS  PubMed  Google Scholar 

  36. Yasuda T, Shirakata M, Iwama A, Ishii A, Ebihara Y, Osawa M et al. Role of Dok-1 and Dok-2 in myeloid homeostasis and suppression of leukemia. J Exp Med 2004; 200: 1681–1687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Niki M, Di Cristofano A, Zhao M, Honda H, Hirai H, Van Aelst L et al. Role of Dok-1 and Dok-2 in leukemia suppression. J Exp Med 2004; 200: 1689–1695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Berger AH, Niki M, Morotti A, Taylor BS, Socci ND, Viale A et al. Identification of DOK genes as lung tumor suppressors. Nat Genet 2010; 42: 216–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mashima R, Honda K, Yang Y, Morita Y, Inoue A, Arimura S et al. Mice lacking Dok-1, Dok-2, and Dok-3 succumb to aggressive histiocytic sarcoma. Lab Invest 2010; 90: 1357–1364.

    Article  CAS  PubMed  Google Scholar 

  40. White D, Saunders V, Lyons AB, Branford S, Grigg A, To LB et al. In vitro sensitivity to imatinib-induced inhibition of ABL kinase activity is predictive of molecular response in patients with de novo CML. Blood 2005; 106: 2520–2526.

    Article  CAS  PubMed  Google Scholar 

  41. Shinohara H, Yasuda T, Yamanashi Y . Dok-1 tyrosine residues at 336 and 340 are essential for the negative regulation of Ras-Erk signalling, but dispensable for rasGAP-binding. Genes Cells 2004; 9: 601–607.

    Article  CAS  PubMed  Google Scholar 

  42. Greulich H, Hanafusa H . A role for Ras in v-Crk transformation. Cell Growth Differ 1996; 7: 1443–1451.

    CAS  PubMed  Google Scholar 

  43. Neuzillet C, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S, Raymond E . MEK in cancer and cancer therapy. Pharmacol Ther 2014; 141: 160–171.

    Article  CAS  PubMed  Google Scholar 

  44. Wagner MJ, Stacey MM, Liu BA, Pawson T . Molecular Mechanisms of SH2- and PTB-Domain-Containing Proteins in Receptor Tyrosine Kinase Signaling. Cold Spring Harb Perspect Biol 2013; 5: 12a008987.

    Article  Google Scholar 

  45. Machida K, Thompson CM, Dierck K, Jablonowski K, Karkkainen S, Liu B et al. High-throughput phosphotyrosine profiling using SH2 domains. Mol Cell 2007; 26: 899–915.

    Article  CAS  PubMed  Google Scholar 

  46. Chodniewicz D, Klemke RL . Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold. Biochim Biophys Acta 2004; 1692: 63–76.

    Article  CAS  PubMed  Google Scholar 

  47. Downey C, Craig DH, Basson MD . Pressure activates colon cancer cell adhesion via paxillin phosphorylation, Crk, Cas, and Rac1. Cell Mol Life Sci 2008; 65: 1446–1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Watanabe T, Tsuda M, Makino Y, Konstantinou T, Nishihara H, Majima T et al. Crk adaptor protein-induced phosphorylation of Gab1 on tyrosine 307 via Src is important for organization of focal adhesions and enhanced cell migration. Cell Res 2009; 19: 638–650.

    Article  CAS  PubMed  Google Scholar 

  49. Gil-Henn H, Patsialou A, Wang Y, Warren MS, Condeelis JS, Koleske AJ . Arg/Abl2 promotes invasion and attenuates proliferation of breast cancer in vivo. Oncogene 2013; 32: 2622–2630.

    Article  CAS  PubMed  Google Scholar 

  50. Allington TM, Galliher-Beckley AJ, Schiemann WP . Activated Abl kinase inhibits oncogenic transforming growth factor-beta signaling and tumorigenesis in mammary tumors. FASEB J 2009; 23: 4231–4243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Noren NK, Foos G, Hauser CA, Pasquale EB . The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway. Nat Cell Biol 2006; 8: 815–825.

    Article  CAS  PubMed  Google Scholar 

  52. Nelms K, Snow AJ, Noben-Trauth K . Dok1 encoding p62(dok) maps to mouse chromosome 6 and human chromosome 2 in a region of translocation in chronic lymphocytic leukemia. Genomics 1998; 53: 243–245.

    Article  CAS  PubMed  Google Scholar 

  53. Lee S, Roy F, Galmarini CM, Accardi R, Michelon J, Viller A et al. Frameshift mutation in the Dok1 gene in chronic lymphocytic leukemia. Oncogene 2004; 23: 2287–2297.

    Article  CAS  PubMed  Google Scholar 

  54. Lambert MP, Paliwal A, Vaissiere T, Chemin I, Zoulim F, Tommasino M et al. Aberrant DNA methylation distinguishes hepatocellular carcinoma associated with HBV and HCV infection and alcohol intake. J Hepatol 2011; 54: 705–715.

    Article  CAS  PubMed  Google Scholar 

  55. Saulnier A, Vaissiere T, Yue J, Siouda M, Malfroy M, Accardi R et al. Inactivation of the putative suppressor gene DOK1 by promoter hypermethylation in primary human cancers. Int J Cancer 2012; 130: 2484–2494.

    Article  CAS  PubMed  Google Scholar 

  56. Akagi T, Shishido T, Murata K, Hanafusa H . v-Crk activates the phosphoinositide 3-kinase/AKT pathway in transformation. Proc Natl Acad Sci USA 2000; 97: 7290–7295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Songyang Z, Yamanashi Y, Liu D, Baltimore D . Domain-dependent function of the rasGAP-binding protein p62Dok in cell signaling. J Biol Chem 2001; 276: 2459–2465.

    Article  CAS  PubMed  Google Scholar 

  58. Mochizuki N, Yamashita S, Kurokawa K, Ohba Y, Nagai T, Miyawaki A et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 2001; 411: 1065–1068.

    Article  CAS  PubMed  Google Scholar 

  59. Yip SC, El-Sibai M, Coniglio SJ, Mouneimne G, Eddy RJ, Drees BE et al. The distinct roles of Ras and Rac in PI 3-kinase-dependent protrusion during EGF-stimulated cell migration. J Cell Sci 2007; 120: 3138–3146.

    Article  CAS  PubMed  Google Scholar 

  60. Kain KH, Klemke RL . Inhibition of cell migration by Abl family tyrosine kinases through uncoupling of Crk-CAS complexes. J Biol Chem 2001; 276: 16185–16192.

    Article  CAS  PubMed  Google Scholar 

  61. Kain KH, Gooch S, Klemke RL . Cytoplasmic c-Abl provides a molecular 'Rheostat' controlling carcinoma cell survival and invasion. Oncogene 2003; 22: 6071–6080.

    Article  CAS  PubMed  Google Scholar 

  62. de Jong R, ten Hoeve J, Heisterkamp N, Groffen J . Tyrosine 207 in CRKL is the BCR/ABL phosphorylation site. Oncogene 1997; 14: 507–513.

    Article  CAS  PubMed  Google Scholar 

  63. Senechal K, Heaney C, Druker B, Sawyers CL . Structural requirements for function of the Crkl adapter protein in fibroblasts and hematopoietic cells. Mol Cell Biol 1998; 18: 5082–5090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pertz O, Hodgson L, Klemke RL, Hahn KM . Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 2006; 440: 1069–1072.

    Article  CAS  PubMed  Google Scholar 

  65. Scheffzek K, Grunewald P, Wohlgemuth S, Kabsch W, Tu H, Wigler M et al. The Ras-Byr2RBD complex: structural basis for Ras effector recognition in yeast. Structure 2001; 9: 1043–1050.

    Article  CAS  PubMed  Google Scholar 

  66. Mihrshahi R, Barclay AN, Brown MH . Essential roles for Dok2 and RasGAP in CD200 receptor-mediated regulation of human myeloid cells. J Immunol 2009; 183: 4879–4886.

    Article  CAS  PubMed  Google Scholar 

  67. Kunath T, Gish G, Lickert H, Jones N, Pawson T, Rossant J . Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nat Biotechnol 2003; 21: 559–561.

    Article  CAS  PubMed  Google Scholar 

  68. Hodgson L, Shen F, Hahn K . Biosensors for characterizing the dynamics of rho family GTPases in living cells. Curr Protoc Cell Biol 2010; Chapter 14: Unit 14.11.1–26.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sofya Borinskaya for technical help in soft agar colony counting, Mari Ogiue-Ikeda for the preparation of the SH2 probes and Joshua Jadwin for critically reading this manuscript. In addition, we greatly appreciate Pier Paolo Pandolfi from Harvard Medical School for generously providing the human Dok1 cDNA. This study was supported by grants CA82258 (to BJM) and NS071216 (to YIW) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B J Mayer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, K., Yin, T., Machida, K. et al. Phosphorylation of Dok1 by Abl family kinases inhibits CrkI transforming activity. Oncogene 34, 2650–2659 (2015). https://doi.org/10.1038/onc.2014.210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.210

Search

Quick links