Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Crumbs interacts with Xpd for nuclear division control in Drosophila

Abstract

Crumbs (Crb) family proteins are crucial for cell polarity. Recent studies indicate that they are also involved in growth regulation and cancer. However, it is not well-understood how Crb participates in mitotic processes. Here, we report that Drosophila Crb is critically involved in nuclear division by interacting with Xeroderma pigmentosum D (XPD). A novel gene named galla-1 was identified from a genetic screen for crb modifiers. Galla-1 protein shows homology to MIP18, a subunit of the mitotic spindle-associated MMS19–XPD complex. Loss-of-function galla-1 mutants show abnormal chromosome segregation, defective centrosome positions and branched spindles during nuclear division in early embryos. Embryos with loss-of-function or overexpression of crb show similar mitotic defects and genetic interaction with galla-1. Both Galla-1 and Crb proteins show overlapping localization with spindle microtubules during nuclear division. Galla-1 physically interacts with the intracellular domain of Crb. Interestingly, Galla-1 shows little binding to the Drosophila homolog of XPD, but a related protein Galla-2 binds both Crb and Xpd. Loss-of-function galla-2 mutants show similar mitotic defects as galla-1 and strong genetic interaction with crb. Xpd can form a physical complex with Crb. In imaginal disc, Crb overexpression causes tissue overgrowth as well as DNA damages marked by H2Av phosphorylation. These phenotypes are suppressed by reduction of Xpd. Taken together, this study identifies a novel Crb–Galla–Xpd complex and its function for proper chromosome segregation during nuclear division, implicating a potential link between Crb and Xpd-related genome instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Wolff TR, Ready DF . Pattern formation in the Drosophila retina. In: Bate M, Martinez-Arias A (eds). The Development of Drosophila Melanogaster. Cold Spring Harbor Laboratory Press: Plainview, NY, USA, 1993, pp 1277–1325.

    Google Scholar 

  2. Tepass U, Theres C, Knust E . Crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 1990; 61: 787–799.

    Article  CAS  Google Scholar 

  3. Knust E, Dietrich U, Tepass U, Bremer KA, Weigel D, Vassin H et al. EGF homologous sequences encoded in the genome of Drosophila melanogaster, and their relation to neurogenic genes. EMBO J 1987; 6: 761–766.

    Article  CAS  PubMed Central  Google Scholar 

  4. Wodarz A, Hinz U, Engelbert M, Knust E . Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of drosophila. Cell 1995; 82: 67–76.

    Article  CAS  Google Scholar 

  5. Izaddoost S, Nam S-C, Bhat MA, Bellen HJ, Choi K-W . Drosophila Crumbs is a positional cue in photoreceptor adherens junctions and rhabdomeres. Nature 2002; 416: 178–183.

    Article  CAS  Google Scholar 

  6. Pellikka M, Tanentzapf G, Pinto M, Smith C, McGlade CJ, Ready DF et al. Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature 2002; 416: 143–149.

    Article  CAS  Google Scholar 

  7. den Hollander AI, Johnson K, de Kok YJM, Klebes A, Brunner HG, Knust E et al. CRB1 has a cytoplasmic domain that is functionally conserved between human and Drosophila. Hum Mol Genet 2001; 10: 2767–2773.

    Article  CAS  Google Scholar 

  8. den Hollander AI, ten Brink JB, de Kok YJM, van Soest S, van den Born LI, van Driel MA et al. Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nat Genet 1999; 23: 217–221.

    Article  CAS  Google Scholar 

  9. Chen C-L, Gajewski KM, Hamaratoglu F, Bossuyt W, Sansores-Garcia L, Tao C et al. The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci USA 2010; 107: 15810–15815.

    Article  CAS  Google Scholar 

  10. Ling C, Zheng Y, Yin F, Yu J, Huang J, Hong Y et al. The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to expanded. Proc Natl Acad Sci USA 2010; 107: 10532–10537.

    Article  CAS  PubMed Central  Google Scholar 

  11. Robinson BS, Huang J, Hong Y, Moberg KH . Crumbs regulates Salvador/Warts/Hippo Signaling in drosophila via the FERM-domain protein expanded. Curr Biol 2010; 20: 582–590.

    Article  CAS  PubMed Central  Google Scholar 

  12. Herranz H, Stamataki E, Feiguin F, Milan M . Self-refinement of Notch activity through the transmembrane protein Crumbs: modulation of gamma-Secretase activity. EMBO Rep 2006; 7: 297–302.

    Article  CAS  PubMed Central  Google Scholar 

  13. Klebes A, Knust E . A conserved motif in Crumbs is required for E-cadherin localisation and zonula adherens formation in Drosophila. Curr Biol 2000; 10: 76–85.

    Article  CAS  Google Scholar 

  14. Bachmann A, Schneider M, Theilenberg E, Grawe F, Knust E . Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity. Nature 2001; 414: 638–643.

    Article  CAS  Google Scholar 

  15. Hong Y, Stronach B, Perrimon N, Jan LY, Jan YN . Drosophila Stardust interacts with Crumbs to control polarity of epithelia but not neuroblasts. Nature 2001; 414: 634–638.

    Article  CAS  Google Scholar 

  16. Médina E, Williams J, Klipfell E, Zarnescu D, Thomas G, Le Bivic A . Crumbs interacts with moesin and βHeavy-spectrin in the apical membrane skeleton of Drosophila. J Cell Biol 2002; 158: 941–951.

    Article  PubMed Central  Google Scholar 

  17. Brust‐Mascher I, Scholey JM . Mitotic Spindle Dynamics in Drosophila. Int Rev Cytol 2007; 259: 139–172.

    Article  Google Scholar 

  18. Tanentzapf G, Smith C, McGlade J, Tepass U . Apical, lateral, and basal polarization cues contribute to the development of the follicular epithelium during Drosophila oogenesis. J Cell Biol 2000; 151: 891–904.

    Article  CAS  PubMed Central  Google Scholar 

  19. Tepass U, Knust E . Phenotypic and developmental analysis of mutations at the crumbs locus, a gene required for the development of epithelia in Drosophila melanogaster. Roux’s Arch Dev Biol 1990; 199: 189–206.

    Article  CAS  Google Scholar 

  20. Tepass U . The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 2012; 28: 655–685.

    Article  CAS  Google Scholar 

  21. Zurita M, Merino C . The transcriptional complexity of the TFIIH complex. Trends Genet 2003; 19: 578–584.

    Article  CAS  PubMed Central  Google Scholar 

  22. Ito S, Tan LJ, Andoh D, Narita T, Seki M, Hirano Y et al. MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Mol Cell 2010; 39: 632–640.

    Article  CAS  Google Scholar 

  23. Gari K, León Ortiz AM, Borel V, Flynn H, Skehel JM, Boulton SJ . MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science 2012; 337: 243–245.

    Article  CAS  Google Scholar 

  24. Stehling O, Vashisht AA, Mascarenhas J, Jonsson ZO, Sharma T, Netz DJA et al. MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science 2012; 337: 195–199.

    Article  CAS  PubMed Central  Google Scholar 

  25. Cameroni E, Stettler K, Suter B . On the traces of XPD: cell cycle matters–untangling the genotype-phenotype relationship of XPD mutations. Cell Div 2010; 5: 24.

    Article  PubMed Central  Google Scholar 

  26. Li X, Urwyler O, Suter B . Drosophila xpd regulates cdk7 localization, mitotic kinase activity, spindle dynamics, and chromosome segregation. PLoS Genet 2010; 6: e1000876.

    Article  PubMed Central  Google Scholar 

  27. Brand AH, Perrimon N . Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993; 118: 401–415.

    CAS  PubMed  Google Scholar 

  28. Gao G, Bi X, Chen J, Srikanta D, Rong YS . Mre11-Rad50-Nbs complex is required to cap telomeres during Drosophila embryogenesis. Proc Natl Acad Sci USA 2009; 106: 10728–10733.

    Article  CAS  Google Scholar 

  29. Su TT, Jaklevic B . DNA damage leads to a Cyclin A–dependent delay in metaphase-anaphase transition in the Drosophila gastrula. Curr Biol 2001; 11: 8–17.

    Article  CAS  Google Scholar 

  30. Madigan JP, Chotkowski HL, Glaser RL . DNA double‐strand break‐induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation‐induced apoptosis. Nucleic Acids Res 2002; 30: 3698–3705.

    Article  CAS  PubMed Central  Google Scholar 

  31. Perrimon N . Clonal analysis of dominant female-sterile, germline-dependent mutations in Drosophila melanogaster. Genetics 1984; 108: 927–939.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rorth P . Gal4 in the Drosophila female germline. Mech Dev 1998; 78: 113–118.

    Article  CAS  Google Scholar 

  33. Wodarz A, Grawe F, Knust E . CRUMBS is involved in the control of apical protein targeting during Drosophila epithelial development. Mech Dev 1993; 44: 175–187.

    Article  CAS  Google Scholar 

  34. Huang J, Zhou W, Dong W, Watson AM, Hong Y . Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc Natl Acad Sci USA 2009; 106: 8284–8289.

    Article  CAS  Google Scholar 

  35. Chen J, Larochelle S, Li X, Suter B . Xpd/Ercc2 regulates CAK activity and mitotic progression. Nature 2003; 424: 228–232.

    Article  CAS  Google Scholar 

  36. Grzeschik NA, Parsons LM, Allott ML, Harvey KF, Richardson HE . Lgl, aPKC, and crumbs regulate the salvador/warts/hippo pathway through two distinct mechanisms. Curr Biol 2010; 20: 573–581.

    Article  CAS  PubMed Central  Google Scholar 

  37. Parsons LM, Grzeschik NA, Allott M, Richardson H . Lgl/aPKC and Crb regulate the Salvador/Warts/Hippo pathway. Fly 2010; 4: 288–293.

    Article  CAS  PubMed Central  Google Scholar 

  38. Hehnly H, Doxsey S . Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev Cell 2014; 28: 497–507.

    Article  CAS  PubMed Central  Google Scholar 

  39. Capalbo L, D'Avino PP, Archambault V, Glover DM . Rab5 GTPase controls chromosome alignment through Lamin disassembly and relocation of the NuMA-like protein Mud to the poles during mitosis. Proc Natl Acad Sci USA 2011; 108: 17343–17348.

    Article  CAS  Google Scholar 

  40. Li K, Kaufman TC . The homeotic target gene centrosomin encodes an essential centrosomal component. Cell 1996; 85: 585–596.

    Article  CAS  Google Scholar 

  41. Frangioni JV, Neel BG . Solubilization and purification of enzymatically active Glutathione-S-Transferase (pGEX) fusion proteins. Anal Biochem 1993; 210: 179–187.

    Article  CAS  Google Scholar 

  42. Thompson JD, Higgins DG, Gibson TJ . Clustal-W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673–4680.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Kyung-Ok Cho, Sang-Chul Nam and Walton Jones for critical comments on the manuscript. We thank Beat Suter and Tom Kaufmann for xpd mutant and anti-centrosomin antibody, respectively. We also thank Yang Hong for Crb::GFP and crb mutant alleles. We acknowledge the Bloomington Drosophila Stock Center, the National Institute of Genetics stock center and the Developmental Studies Hybridoma Bank for fly stocks and antibodies. This research was supported by grants from the World Class University Program (R31-2008-000-10071-0), the National President Fellowship (35B-2011-1-C00033) and the National Research Laboratory grant (NRF-2011-0028326) through the National Research Foundation of Korea funded by the Ministry of Education, Science & Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K-W Choi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeom, E., Hong, ST. & Choi, KW. Crumbs interacts with Xpd for nuclear division control in Drosophila. Oncogene 34, 2777–2789 (2015). https://doi.org/10.1038/onc.2014.202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.202

This article is cited by

Search

Quick links