Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Application of molecular technologies for phosphoproteomic analysis of clinical samples

Abstract

The integration of small kinase inhibitors and monoclonal antibodies into oncological practice has opened a new paradigm for treating cancer patients. As proteins are the direct targets of the new generations of targeted therapeutics, many of which are kinase/enzymatic inhibitors, there is an increasing interest in developing technologies capable of monitoring post-translational changes of the human proteome for the identification of new predictive, prognostic and therapeutic biomarkers. It is well known that the vast majority of the activation/deactivation of these drug targets is driven by phosphorylation. This review provides a description of the main proteomic platforms (planar and bead array, reverse phase protein microarray, phosphoflow, AQUA and mass spectrometry) that have successfully been used for measuring changes in phosphorylation level of drug targets and downstream substrates using clinical specimens. Major emphasis was given to the strengths and weaknesses of the different platforms and to the major barriers that are associated with the analysis of the phosphoproteome. Finally, a number of examples of application of the above-mentioned technologies in the clinical setting are reported.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M et al Genetic alterations during colorectal-tumor development. New Engl J Med 1988; 319: 525–532.

    Article  CAS  Google Scholar 

  2. Carbone M, Pass HI . Multistep and multifactorial carcinogenesis: when does a contributing factor become a carcinogen? Semin Cancer Biol 2004; 14: 399–405.

    Article  CAS  Google Scholar 

  3. Roth BJ, Krilov L, Adams S, Aghajanian CA, Bach P, Braiteh F et al Clinical cancer advances 2012: annual report on progress against cancer from the american society of clinical oncology. J Clin Oncol 2013; 31: 131–161.

    Article  Google Scholar 

  4. Arends JW . Molecular interactions in the Vogelstein model of colorectal carcinoma. J Pathol 2000; 190: 412–416.

    Article  CAS  Google Scholar 

  5. Pierobon M, Belluco C, Liotta LA, Petricoin EF 3rd . Reverse phase protein microarrays for clinical applications. Methods Mol Biol 2011; 785: 3–12.

    Article  CAS  Google Scholar 

  6. Oberprieler NG, Taskén K . Analysing phosphorylation-based signalling networks by phospho flow cytometry. Cell Signal 2011; 23: 14–18.

    Article  CAS  Google Scholar 

  7. Espina V, Edmiston KH, Heiby M, Pierobon M, Sciro M, Merritt B et al A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 2008; 7: 1998–2018.

    Article  CAS  Google Scholar 

  8. Espina V, Mueller C, Liotta LA . Phosphoprotein stability in clinical tissue and its relevance for reverse phase protein microarray technology. Methods Mol Biol 2011; 785: 23–43.

    Article  CAS  Google Scholar 

  9. Silvestri A, Colombatti A, Calvert VS, Deng J, Mammano E, Belluco C et al Protein pathway biomarker analysis of human cancer reveals requirement for upfront cellular-enrichment processing. Lab Invest 2010; 90: 787–796.

    Article  CAS  Google Scholar 

  10. Wulfkuhle JD, Speer R, Pierobon M, Laird J, Espina V, Deng J et al Multiplexed cell signaling analysis of human breast cancer applications for personalized therapy. J Proteome Res 2008; 7: 1508–1517.

    Article  CAS  Google Scholar 

  11. Espina V, Wulfkuhle J, Liotta LA . Application of laser microdissection and reverse-phase protein microarrays to the molecular profiling of cancer signal pathway networks in the tissue microenvironment. Clin Lab Med 2009; 29: 1–13.

    Article  Google Scholar 

  12. Xu BJ . Combining laser capture microdissection and proteomics: methodologies and clinical applications. Proteomics Clin Appl 2010; 4: 116–123.

    Article  CAS  Google Scholar 

  13. Liu A . Laser capture microdissection in the tissue biorepository. J Biomol Tech 2010; 21: 120–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Brennan DJ, O'Connor DP, Rexhepaj E, Ponten F, Gallagher WM . Antibody-based proteomics: fast-tracking molecular diagnostics in oncology. Nat Rev Cancer 2010; 10: 605–617.

    Article  CAS  Google Scholar 

  15. Shah MA, Wainberg ZA, Catenacci DV, Hochster HS, Ford J, Kunz P et al Phase II studyevaluating 2 dosing schedules of oral foretinib (GSK1363089), cMET/VEGFR2 inhibitor, in patients with metastatic gastric cancer. PLoS One 2013; 8: e54014.

    Article  CAS  Google Scholar 

  16. Angevin E, Lopez-Martin JA, Lin CC, Gschwend JE, Harzstark A, Castellano D et al Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell carcinoma. Clin Cancer Res 2013; 19: 1257–1268.

    Article  CAS  Google Scholar 

  17. Haura EB, Tanvetyanon T, Chiappori A, Williams C, Simon G, Antonia S et al Phase I/II study of the Src inhibitor dasatinib in combination with erlotinib in advanced non-small-cell lung. J Clin Oncol 2010; 28: 1387–1394.

    Article  CAS  Google Scholar 

  18. Kummar S, Gutierrez ME, Chen A, Turkbey IB, Allen D, Horneffer YR et al Phase I trial of vandetanib and bevacizumab evaluating the VEGF and EGF signal transduction pathways in adults with solid tumours and lymphomas. Eur J Cancer 2011; 47: 997–1005.

    Article  CAS  Google Scholar 

  19. Chowdhury F, Williams A, Johnson P . Validation and comparison of two multiplex technologies, Luminex and Mesoscale Discovery, for human cytokine profiling. J Immunol Methods 2009; 340: 55–64.

    Article  CAS  Google Scholar 

  20. Dahut WL, Scripture C, Posadas E, Jain L, Gulley JL, Arlen PM et al A phase II clinical trial of sorafenib in androgen-independent prostate cancer. Clin Cancer Res 2008; 14: 209–214.

    Article  CAS  Google Scholar 

  21. Yap TA, Yan L, Patnaik A, Fearen I, Olmos D, Papadopoulos K et al First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol 2011; 29: 4688–4695.

    Article  CAS  Google Scholar 

  22. Institute of Cancer Research (United Kingdom). Analysis of pharmacodynamic changes with AUY922A, an HSP90 inhibitor. 2000 (accessed on 14 Nov 2014). Available from http://clinicaltrials.gov/show/NCT01024283 NLM Identifier: NCT01024283.

  23. Braeckmans K, De Smedt SC, Leblans M, Pauwels R, Demeester J . Encoding microcarriers: present and future technologies. Nat Rev Drug Discov 2002; 1: 447–456.

    Article  CAS  Google Scholar 

  24. Du J, Bernasconi P, Clauser KR, Mani DR, Finn SP, Beroukhim R et al Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nat Biotechnol 2009; 27: 77–83.

    Article  CAS  Google Scholar 

  25. Schwenk JM, Nilsson P . Antibody suspension bead arrays. Methods Mol Biol 2011; 723: 29–36.

    Article  CAS  Google Scholar 

  26. Perkins G, Lièvre A, Ramacci C, Méatchi T, de Reynies A, Emile JF et al Additional value of EGFR downstream signaling phosphoprotein expression to KRAS status for response to anti-EGFR antibodies in colorectal cancer. Int J Cancer 2010; 127: 1321–1331.

    Article  CAS  Google Scholar 

  27. Baselga J, Cervantes A, Martinelli E, Chirivella I, Hoekman K, Hurwitz HI et al Phase I safety, pharmacokinetics, and inhibition of SRC activity study of saracatinib in patients with solid tumors. Clin Cancer Res 2010; 16: 4876–4883.

    Article  CAS  Google Scholar 

  28. VanMeter A, Signore M, Pierobon M, Espina V, Liotta LA, Petricoin EF . Reverse-phase protein microarrays: application to biomarker discovery and translational medicine. Expert Rev Mol Diagn 2007; 7: 625–633.

    Article  CAS  Google Scholar 

  29. Mueller C, Liotta LA, Espina V . Reverse phase protein microarrays advance to use in clinical trials. Mol Oncol 2010; 4: 461–481.

    Article  CAS  Google Scholar 

  30. VanMeter AJ, Rodriguez AS, Bowman ED, Jen J, Harris CC, Deng J et al Laser capture microdissection and protein microarray analysis of human non-small cell lung cancer: differential epidermal growth factor receptor (EGPR) phosphorylation events associated with mutated EGFR compared with wild type. Mol Cell Proteomics 2008; 7: 1902–1924.

    Article  CAS  Google Scholar 

  31. Irwin ME, Nelson LD, Santiago-O'Farrill JM, Knouse PD, Miller CP, Palla SL et al Small molecule ErbB inhibitors decrease proliferative signaling and promote apoptosis in philadelphia chromosome-positive acute lymphoblastic leukemia. PLoS One 2013; 8: e70608.

    Article  CAS  Google Scholar 

  32. Speer R, Sgroi DC, Liotta LA, Petricoin EF . Molecular network analysis of signaling pathways in ERalpha+early stage breast cancer reveal changes in pro-survival pathway activation that correlate with outcome and response to tamoxifen monotherapy. Proc Am Assoc Cancer Res 2006; 47: (abstract 3577).

  33. Petricoin EF, Espina V, Araujo RP, Midura B, Yeung C, Wan X et al Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 2007; 67: 3431–3440.

    Article  CAS  Google Scholar 

  34. Esserman LJ, Berry DA, DeMichele A, Carey L, Davis SE, Buxton M et al Pathologic complete response predicts recurrence-free survival more effectively by cancer subset:results from the I-SPY 1 TRIAL—CALGB 150007/150012, ACRIN 6657. J Clin Oncol 2012; 30: 3242–3249.

    Article  Google Scholar 

  35. Wulfkuhle JD, Berg D, Wolff C, Langer R, Tran K, Illi J et al Molecular analysis of HER2 signaling in human breast cancer by functional protein pathway activation mapping. Clin Cancer Res 2012; 18: 6426–6435.

    Article  CAS  Google Scholar 

  36. Barker AD, Sigman CC, Kelloff GJ, Hylton NM, Berry DA, Esserman LJ . I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther 2009; 86: 97–100.

    Article  CAS  Google Scholar 

  37. University of Michigan University Hospital, Case Western Reserve, Cleveland, Ohio University, University of Pittsburgh, M D Anderson Cancer Center. Cetuximab and Bevacizumab in treating patients with recurrent or metastatic head and neck cancer. 2000 (accessed on 14 Nov 2014). Available from http://clinicaltrials.gov/ct2/show/NCT00407810?term=Cetuximab+and+Bevacizumab+in+Treating+Patients+With+Recurrent+or+Metastatic+Head+and+Neck+Cancer&rank=1 NLM Identifier: NCT00407810.

  38. Jameson GS, Petricoin E, Sachdev JC, Liotta LA, Loesch D et al A pilot study utilizing molecular profiling to find potential targets and select individualized treatments for patients with metastatic breast cancer. J Clin Oncol 2013; 31: (suppl; abstract TPS11123).

  39. Krutzik PO, Trejo A, Schulz KR, Nolan GP . Phospho flow cytometry methods for the analysis of kinase signaling in cell lines and primary human blood samples. Methods Mol Biol 2011; 699: 179–202.

    Article  CAS  Google Scholar 

  40. Krutzik PO, Clutter MR, Trejo A, Nolan GP . Fluorescent cell barcoding for multiplex flow cytometry. Curr Protoc Cytom 2011; Chapter 6: unit 6.31.

  41. Tong FK, Chow S, Hedley D . Pharmacodynamic monitoring of BAY 43-9006 (Sorafenib) in phase I clinical trials involving solid tumor and AML/MDS patients, using flow cytometry to monitor activation of the ERK pathway in peripheral blood cells. Cytometry B Clin Cytom 2006; 70: 107–114.

    Article  Google Scholar 

  42. Kornblau SM, Minden MD, Rosen DB, Putta S, Cohen A, Covey T et al Dynamic single-cell network profiles in acute myelogenous leukemia are associated with patient response to standard induction therapy. Clin Cancer Res 2010; 16: 3721–3733.

    Article  CAS  Google Scholar 

  43. Perl AE, Kasner MT, Shank D, Luger SM, Carroll M . Single-cell pharmacodynamic monitoring of S6 ribosomal protein phosphorylation in AML blasts during a clinical trial combining the mTOR inhibitor sirolimus and intensive chemotherapy. Clin Cancer Res 2012; 18: 1716–1725.

    Article  CAS  Google Scholar 

  44. Irish JM, Hovland R, Krutzik PO, Perez OD, Bruserud Ø, Gjertsen BT et al Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 2004; 118: 217–228.

    Article  CAS  Google Scholar 

  45. Rimm DL, Nielsen TO, Jewell SD, Rohrer DC, Broadwater G, Waldman F et al Cancer and Leukemia Group B Pathology Committee guidelines for tissue microarray construction representing multicenter prospective clinical trial tissues. J Clin Oncol 2011; 29: 2282–2290.

    Article  Google Scholar 

  46. Camp RL, Neumeister V, Rimm DL . A decade of tissue microarrays: progress in the discovery and validation of cancer biomarkers. J Clin Oncol 2008; 26: 5630–5637.

    Article  Google Scholar 

  47. Camp RL, Chung GG, Rimm DL . Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat Med 2002; 8: 1323–1327.

    Article  CAS  Google Scholar 

  48. Pectasides E, Rampias T, Kountourakis P, Sasaki C, Kowalski D, Fountzilas G et al Comparative prognostic value of epidermal growth factor quantitative protein expressioncompared with FISH for head and neck squamous cell carcinoma. Clin Cancer Res 2011; 17: 2947–2954.

    Article  CAS  Google Scholar 

  49. Mascaux C, Wynes MW, Kato Y, Tran C, Asuncion BR, Zhao JM et al EGFR protein expression in non-small cell lung cancer predicts response to an EGFR tyrosine kinase inhibitor—a novel antibody for immunohistochemistry or AQUA technology. Clin Cancer Res 2011; 17: 7796–7807.

    Article  CAS  Google Scholar 

  50. Rimm D, Ballman KV, Cheng H, Vassilakopoulou M, Chen B, Gralow J et al EGFR expression measured by quantitative immunofluorescense is associated with decreased benefit from trastuzumab in the adjuvant setting in the NCCTG (Alliance) N9831 trial. Cancer Res 2012; 72: supplement 3.

    Article  Google Scholar 

  51. Osborne CK, Neven P, Dirix LY, Mackey JR, Robert J, Underhill C et al Gefitinib or placebo in combination with tamoxifen in patients with hormone receptor-positive metastatic breast cancer: a randomized phase II study. Clin Cancer Res 2011; 17: 1147–1159.

    Article  CAS  Google Scholar 

  52. Sato T, Neilson LM, Peck AR, Liu C, Tran TH, Witkiewicz A et al Signal transducer and activator of transcription-3 and breast cancer prognosis. Am J Cancer Res 2011; 1: 347–355.

    PubMed  PubMed Central  Google Scholar 

  53. Peck AR, Witkiewicz AK, Liu C, Stringer GA, Klimowicz AC, Pequignot E et al Loss of nuclear localized and tyrosine phosphorylated Stat5 in breast cancer predicts poor clinical outcome and increased risk of antiestrogen therapy failure. J Clin Oncol 2011; 29: 2448–2458.

    Article  CAS  Google Scholar 

  54. Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M . Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 2010; 7: 383–385.

    Article  CAS  Google Scholar 

  55. Stasyk T, Huber LA . Mapping in vivo signal transduction defects by phosphoproteomics. Trends Mol Med 2012; 18: 43–51.

    Article  CAS  Google Scholar 

  56. Gámez-Pozo A, Sánchez-Navarro I, Calvo E, Díaz E, Miguel-Martín M, López R et al Protein phosphorylation analysis in archival clinical cancer samples by shotgun and targeted proteomics approaches. Mol Biosyst 2011; 7: 2368–2374.

    Article  Google Scholar 

  57. Chen L, Fang B, Giorgianni F, Gingrich JR, Beranova-Giorgianni S . Investigation of phosphoprotein signatures of archived prostate cancer tissue specimens via proteomic analysis. Electrophoresis 2011; 32: 1984–1991.

    Article  CAS  Google Scholar 

  58. Sprung RW, Martinez MA, Carpenter KL, Ham AJ, Washington MK, Arteaga CL et al Precision of Multiple Reaction Monitoring Mass Spectrometry Analysis of Formalin-Fixed, Paraffin-Embedded Tissue. J Proteome Res 2012; 11: 3498–3505.

    Article  CAS  Google Scholar 

  59. Narumi R, Murakami T, Kuga T, Adachi J, Shiromizu T, Muraoka S et al A strategy for large-scale phosphoproteomics and SRM-based validation of human breast cancer tissue samples. J Proteome Res 2012; 11: 5311–5322.

    Article  CAS  Google Scholar 

  60. Shi T, Fillmore TL, Sun X, Zhao R, Schepmoes AA, Hossain M et al Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum. Proc Natl Acad Sci USA 2012; 109: 15395–15400.

    Article  CAS  Google Scholar 

  61. Duncan JS, Whittle MC, Nakamura K, Abell AN, Midland AA, Zawistowski JS et al Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 2012; 149: 307–321.

    Article  CAS  Google Scholar 

  62. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Körner R et al Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 2008; 31: 438–448.

    Article  CAS  Google Scholar 

  63. Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S et al Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 2007; 25: 1035–1044.

    Article  CAS  Google Scholar 

  64. Lineberger Comprehensive Cancer Center. Defining the triple negative breast cancer kinome response to GSK1120212. 2000 Available from http://clinicaltrials.gov/ct2/show/NCT01467310 NLM Identifier: NCT01467310 (accessed on 14 Nov 2013).

  65. Faratian D, Um I, Wilson DS, Mullen P, Langdon SP, Harrison DJ . Phosphoprotein pathway profiling of ovarian carcinoma for the identification of potential new targets for therapy. Eur J Cancer 2011; 47: 1420–1431.

    Article  CAS  Google Scholar 

  66. Balboni I, Chan SM, Kattah M, Tenenbaum JD, Butte AJ, Utz PJ . Multiplexed protein array platforms for analysis of autoimmune diseases. Annu Rev Immunol 2006; 24: 391–418.

    Article  CAS  Google Scholar 

  67. Breen EC, Reynolds SM, Cox C, Jacobson LP, Magpantay L, Mulder CB et al Multisite comparison of high-sensitivity multiplex cytokine assays. Clin Vaccine Immunol 2011; 18: 1229–1242.

    Article  CAS  Google Scholar 

  68. Sourial S, Marcusson-Ståhl M, Cederbrant K . Meso scale discovery and luminex comparative analysis of calbindin D28K. J Biomed Biotechnol 2009; 2009: 187426.

    Article  Google Scholar 

  69. Fu Q, Zhu J, Van Eyk JE . Comparison of multiplex immunoassay platforms. Clin Chem 2010; 56: 314–318.

    Article  CAS  Google Scholar 

  70. Dabitao D, Margolick JB, Lopez J, Bream JH . Multiplex measurement of proinflammatory cytokines in human serum: comparison of the Meso Scale Discovery electrochemiluminescence assay and the Cytometric Bead Array. J Immunol Methods 2011; 372: 71–77.

    Article  CAS  Google Scholar 

  71. Leng SX, McElhaney JE, Walston JD, Xie D, Fedarko NS, Kuchel GA . ELISA and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol A Biol Sci Med Sci 2008; 63: 879–884.

    Article  Google Scholar 

  72. Drobin K, Nilsson P, Schwenk JM . Highly multiplexed antibody suspension bead arrays for plasma protein profiling. Methods Mol Biol 2013; 1023: 137–145.

    Article  CAS  Google Scholar 

  73. Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW et al Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 2001; 20: 1981–1989.

    Article  CAS  Google Scholar 

  74. Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB et al Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 2006; 5: 2512–2521.

    Article  CAS  Google Scholar 

  75. Pierobon M, Vanmeter AJ, Moroni N, Galdi F, Petricoin EF 3rd . Reverse-phase protein microarrays. Methods Mol Biol 2012; 823: 215–235.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Petricoin.

Ethics declarations

Competing interests

All authors of this manuscript are inventors on US Government and University assigned patents and patent applications that cover aspects of the technologies discussed. As inventors, they are entitled to receive royalties as provided by US Law and George Mason University policy. All authors are consultants to and shareholders of Theranostics Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierobon, M., Wulfkuhle, J., Liotta, L. et al. Application of molecular technologies for phosphoproteomic analysis of clinical samples. Oncogene 34, 805–814 (2015). https://doi.org/10.1038/onc.2014.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.16

This article is cited by

Search

Quick links