Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Arf tumor suppressor disrupts the oncogenic positive feedback loop including c-Myc and DDX5

Abstract

Tumor suppressor protein p19ARF (Arf; p14ARF in humans) functions in both p53-dependent and -independent modes to counteract hyper-proliferative signals caused by proto-oncogene activation, but its p53-independent activities remain poorly understood. Using the tandem affinity purification-tag technique, we purified Arf-containing protein complexes and identified p68 DEAD-box protein (DDX5) as a novel interacting protein of Arf. In this study, we found that DDX5 interacts with c-Myc, and harbors essential roles for c-Myc-mediated transcription and its transforming activity. Furthermore, when c-Myc was forcibly expressed, the expression level of DDX5 protein was drastically increased through the acceleration of protein synthesis of DDX5, suggesting the presence of an oncogenic positive feedback loop including c-Myc and DDX5. Strikingly, Arf blocked the physical interaction between DDX5 and c-Myc, and drove away DDX5 from the promoter of c-Myc target genes. These observations most likely indicate the mechanism by which Arf causes p53-independent tumor-suppressive activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Serrano M, Hannon GJ, Beach D . A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993; 366: 704–707.

    Article  CAS  Google Scholar 

  2. Quelle DE, Zindy F, Ashmun RA, Sherr CJ . Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 1995; 83: 993–1000.

    Article  CAS  Google Scholar 

  3. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997; 91: 649–659.

    Article  CAS  Google Scholar 

  4. Zhang Y, Xiong Y, Yarbrough WG . ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92: 725–734.

    Article  CAS  Google Scholar 

  5. Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ . Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 1998; 95: 8292–8297.

    Article  CAS  Google Scholar 

  6. Honda R, Yasuda H . Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 1999; 18: 22–27.

    Article  CAS  Google Scholar 

  7. Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 2004; 429: 86–92.

    Article  CAS  Google Scholar 

  8. Chen D, Kon N, Li M, Zhang W, Qin J, Gu W . ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 2005; 121: 1071–1083.

    Article  CAS  Google Scholar 

  9. Kelly-Spratt KS, Gurley KE, Yasui Y, Kemp CJ . p19Arf suppresses growth, progression, and metastasis of H-ras-driven carcinomas through p53-dependent and-independent pathways. PLoS Biol 2004; 2: 1138–1149.

    Article  CAS  Google Scholar 

  10. Carnero A, Hudson JD, Price CM, Beach DH . p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2000; 2: 148–155.

    Article  CAS  Google Scholar 

  11. Eischen CM, Weber JD, Roussel MF, Sherr C, Cleveland JL . Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 1999; 13: 2658–2669.

    Article  CAS  Google Scholar 

  12. Weber JD, Jeffers JR, Rehg JE, Randle DH, Lozano G, Roussel MF et al. p53-independent functions of the p19ARF tumor suppressor. Genes Dev 2000; 14: 2358–2365.

    Article  CAS  Google Scholar 

  13. Sugimoto M, Kuo ML, Roussel MF, Sherr CJ . Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol Cell 2003; 11: 415–424.

    Article  CAS  Google Scholar 

  14. Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R et al. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 2003; 12: 1151–1164.

    Article  CAS  Google Scholar 

  15. Bertwistle D, Sugimoto M, Sherr CJ . Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 2004; 24: 985–996.

    Article  CAS  Google Scholar 

  16. Martelli F, Hamilton T, Silver DP, Sharpless NE, Bardeesy N, Rokas M et al. p19ARF targets certain E2F species for degradation. Proc Natl Acad Sci USA 2001; 98: 4455–4460.

    Article  CAS  Google Scholar 

  17. Eymin B, Karayan L, Seite P, Brambilla C, Brambilla E, Larsen CJ et al. Human ARF binds E2F1 and inhibits its transcriptional activity. Oncogene 2001; 20: 1033–1041.

    Article  CAS  Google Scholar 

  18. Datta A, Nag A, Pan W, Hay N, Gartel AL, Colamonici O et al. Myc-ARF (alternate reading frame) interaction inhibits the functions of Myc. J Biol Chem 2004; 279: 36698–36707.

    Article  CAS  Google Scholar 

  19. Qi Y, Gregory MA, Li Z, Brousal JP, West K, Hann SR . p19ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 2004; 431: 712–717.

    Article  CAS  Google Scholar 

  20. Rocha S, Campbell KJ, Perkins ND . p53- and Mdm2-independent repression of NF-κB transactivation by the ARF tumor suppressor. Mol Cell 2003; 12: 15–25.

    Article  CAS  Google Scholar 

  21. Xirodimas DP, Chisholm J, Desterro JM, Lane DP, Hay RT . p14ARF promotes accumulation of SUMO-1 conjugated (H) Mdm2. FEBS Lett 2002; 528: 207–211.

    Article  CAS  Google Scholar 

  22. Chen L, Chen J . MDM2-ARF complex regulates p53 sumoylation. Oncogene 2003; 22: 5348–5357.

    Article  CAS  Google Scholar 

  23. Kuo ML, den Besten W, Thomas MC, Sherr CJ . Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3. Cell Cycle 2008; 7: 3378–3387.

    Article  CAS  Google Scholar 

  24. Lane DP, Hoeffler WK . SV40 large T shares an antigenic determinant with a cellular protein of molecular weight 68 000. Nature 1980; 288: 167–170.

    Article  CAS  Google Scholar 

  25. Hirling H, Scheffner M, Restle T, Stahl H . RNA helicase activity associated with the human p68 protein. Nature 1989; 339: 562–564.

    Article  CAS  Google Scholar 

  26. Heinlein UA . Dead box for the living. J Pathol 1998; 184: 345–347.

    Article  CAS  Google Scholar 

  27. Stevenson RJ, Hamilton SJ, MacCallum DE, Hall PA, Fuller-Pace FV . Expression of the ‘dead box’ RNA helicase p68 is developmentally and growth regulated and correlates with organ differentiation/maturation in the fetus. J Pathol 1998; 184: 351–359.

    Article  CAS  Google Scholar 

  28. Dubey P, Hendrickson RC, Meredith SC, Siegel CT, Shabanowitz J, Skipper JC et al. The immunodominant antigen of an ultraviolet-induced regressor tumor is generated by a somatic point mutation in the DEAD box helicase p68. J Exp Med 1997; 185: 695–705.

    Article  CAS  Google Scholar 

  29. Causevic M, Hislop RG, Kernohan NM, Carey FA, Kay RA, Steele RJ et al. Overexpression and poly-ubiquitylation of the DEAD-box RNA helicase p68 in colorectal tumours. Oncogene 2001; 20: 7734–7743.

    Article  CAS  Google Scholar 

  30. Yang L, Lin C, Liu ZR . Phosphorylations of DEAD box p68 RNA helicase are associated with cancer development and cell proliferation. Mol Cancer Res 2005; 3: 355–363.

    Article  CAS  Google Scholar 

  31. Yang L, Lin C, Liu ZR . P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 2006; 127: 139–155.

    Article  CAS  Google Scholar 

  32. Saporita AJ, Chang HC, Winkeler CL, Apicelli AJ, Kladney RD, Wang J et al. RNA Helicase DDX5 Is a p53-Independent Target of ARF That Participates in Ribosome Biogenesis. Cancer Res 2011; 71: 6708–6717.

    Article  CAS  Google Scholar 

  33. Eilers M, Schirm S, Bishop JM . The MYC protein activates transcription of the α-prothymosin gene. EMBO J 1991; 10: 133–141.

    Article  CAS  Google Scholar 

  34. Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI . A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 1995; 23: 1686–1690.

    Article  CAS  Google Scholar 

  35. Packham G, Cleveland JL . Induction of ornithine decarboxylase by IL-3 is mediated by sequential c-Myc-independent and c-Myc-dependent pathways. Oncogene 1997; 15: 1219–1232.

    Article  CAS  Google Scholar 

  36. Chang DW, Claassen GF, Hann SR, Cole MD . The c-Myc transactivation domain is a direct modulator of apoptotic versus proliferative signals. Mol Cell Biol 2000; 20: 4309–4319.

    Article  CAS  Google Scholar 

  37. Tago K, Chiocca S, Sherr CJ . Sumoylation induced by the Arf tumor suppressor: a p53-independent function. Proc Natl Acad Sci USA 2005; 102: 7689–7694.

    Article  CAS  Google Scholar 

  38. Jacobs AM, Nicol SM, Hislop RG, Jaffray EG, Hay RT, Fuller-Pace FV . SUMO modification of the DEAD box protein p68 modulates its transcriptional activity and promotes its interaction with HDAC1. Oncogene 2007; 26: 5866–5876.

    Article  CAS  Google Scholar 

  39. Bates GJ, Nicol SM, Wilson BJ, Jacobs AM, Bourdon JC, Wardrop J et al. The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J 2005; 24: 543–553.

    Article  CAS  Google Scholar 

  40. Reinhardt HC, Yaffe MB . Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol 2009; 21: 245–255.

    Article  CAS  Google Scholar 

  41. Dang CV . MYC on the path to cancer. Cell 2012; 149: 22–35.

    Article  CAS  Google Scholar 

  42. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458: 762–765.

    Article  CAS  Google Scholar 

  43. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 2008; 105: 18782–18787.

    Article  CAS  Google Scholar 

  44. Martin DE, Powers T, Hall MN . Regulation of ribosome biogenesis: where is TOR? Cell Metab 2006; 4: 259–260.

    Article  CAS  Google Scholar 

  45. Durán RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 2012; 47: 349–358.

    Article  Google Scholar 

  46. Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 1998; 12: 2424–2433.

    Article  CAS  Google Scholar 

  47. Washburn MP, Wolters D, Yates JR 3rd . Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 2001; 19: 242–247.

    Article  CAS  Google Scholar 

  48. Frank SR, Schroeder M, Fernandez P, Taubert S, Amati B . Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev 2001; 15: 2069–2082.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Charles Sherr and Martine Roussel for critical advice and reagents, and Michael Washburn of Stowers Institute for Medical Research Proteomics Center for performing MudPIT analysis. This work was supported by a grant-in-aid for scientific research from the MEXT (20770103), MEXT-supported program for the strategic research foundation at private universities (2013–2017) and the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Tago.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tago, K., Funakoshi-Tago, M., Itoh, H. et al. Arf tumor suppressor disrupts the oncogenic positive feedback loop including c-Myc and DDX5. Oncogene 34, 314–322 (2015). https://doi.org/10.1038/onc.2013.561

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.561

Keywords

This article is cited by

Search

Quick links