Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Overexpression of AKIP1 promotes angiogenesis and lymphangiogenesis in human esophageal squamous cell carcinoma

Abstract

A-kinase-interacting protein 1 (AKIP1) is found to be overexpressed in breast and prostate cancers, suggesting that AKIP1 might act as a potent oncogenic protein. However, the clinical significance and biological role of AKIP1 in cancer progression remain largely unknown. Herein, we report that AKIP1 is markedly overexpressed in esophageal squamous cell carcinoma (ESCC) cell lines and clinical ESCC samples. AKIP1 expression significantly correlates with ESCC progression and patients’ shorter survival time. Furthermore, we find that overexpressing AKIP1 induces, whereas silencing AKIP1 reduces, ESCC angiogenesis and lymphangiogenesis both in vitro and in vivo. Moreover, we demonstrate that AKIP1 transcriptionally upregulates vascular endothelial growth factor-C (VEGF-C) via interaction with its promoter through cooperation with multiple transcriptional factors, including SP1, AP2 and nuclear factor-κB (NF-κB). Importantly, significant correlation between levels of AKIP1 and VEGF-C is observed in a cohort of human ESCC, as well as in non-small cell lung cancer, hepatocellular carcinoma and ovarian cancer. Hence, these findings indicate an important role for AKIP1 in ESCC angiogenesis and lymphangiogenesis, and uncover a novel mechanism for the upregulation of VEGF-C in cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P . Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.

    Article  Google Scholar 

  2. Blot WJ, McLaughlin JK, Fraumeni JF Jr . Esophageal cancer. in Schottenfeld D, Fraumeni JF, (eds). Cancer Epidemiology and Prevention 3rd edn. Oxford University Press, New York, 2006;. p697–p706.

    Chapter  Google Scholar 

  3. Ke L . Mortality and incidence trends from esophagus cancer in selected geographic areas of China circa 1970–90. Intl J cancer 2002; 102: 271–274.

    Article  CAS  Google Scholar 

  4. Enzinger PC, Mayer RJ . Esophageal cancer. N Engl J Med 2003; 349: 2241–2252.

    Article  CAS  Google Scholar 

  5. Mariette C, Balon JM, Piessen G, Fabre S, Van Seuningen I, Triboulet JP . Pattern of recurrence following complete resection of esophageal carcinoma and factors predictive of recurrent disease. Cancer 2003; 97: 1616–1623.

    Article  Google Scholar 

  6. Ooki A, Yamashita K, Kobayashi N, Katada N, Sakuramoto S, Kikuchi S et al. Lymph node metastasis density and growth pattern as independent prognostic factors in advanced esophageal squamous cell carcinoma. World J Surg 2007; 31: 2184–2191.

    Article  Google Scholar 

  7. Sato T, Iizuka N, Hamamoto Y, Yoshino S, Abe T, Takeda S et al. Esophageal squamous cell carcinomas with distinct invasive depth show different gene expression profiles associated with lymph node metastasis. Int J Oncol 2006; 28: 1043–1055.

    CAS  PubMed  Google Scholar 

  8. Kimura H, Konishi K, Arakawa H, Oonishi I, Kaji M, Maeda K et al. Number of lymph node metastases influences survival in patients with thoracic esophageal carcinoma: therapeutic value of radiation treatment for recurrence. Dis Esophagus 1999; 12: 205–208.

    Article  CAS  Google Scholar 

  9. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt-4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996; 15: 290–298.

    Article  CAS  Google Scholar 

  10. Lee J, Gray A, Yuan J, Luoh SM, Avraham H, Wood WI . Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4. Proc Natl Acad Sci USA 1996; 93: 1988–1992.

    Article  CAS  Google Scholar 

  11. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001; 7: 192–198.

    Article  CAS  Google Scholar 

  12. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001; 20: 672–682.

    Article  CAS  Google Scholar 

  13. Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M . VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 2007; 109: 1010–1017.

    Article  CAS  Google Scholar 

  14. Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Ylä-Herttuala S, Jäättelä M et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 2001; 61: 1786–1790.

    CAS  PubMed  Google Scholar 

  15. Achen MG, Stacker SA . Molecular control of lymphatic metastasis. Ann NY Acad Sci 2008; 1131: 225–234.

    Article  CAS  Google Scholar 

  16. Cao Y, Linden P, Farnebo J, Cao R, Eriksson A, Kumar V et al. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci USA 1998; 95: 14389–14394.

    Article  CAS  Google Scholar 

  17. Chien MH, Ku CC, Johansson G, Chen MW, Hsiao M, Su JL et al. Vascular endothelial growth factor-C (VEGF-C) promotes angiogenesis by induction of COX-2 in leukemic cells via the VEGF-R3/JNK/AP-1 pathway. Carcinogenesis 2009; 30: 2005–2013.

    Article  CAS  Google Scholar 

  18. Kumar B, Chile SA, Ray KB, Reddy GE, Addepalli MK, Kumar AS et al. VEGF-C differentially regulates VEGF-A expression in ocular and cancer cells; promotes angiogenesis via RhoA mediated pathway. Angiogenesis 2011; 14: 371–380.

    Article  CAS  Google Scholar 

  19. Saaristo A, Veikkola T, Enholm B, Hytönen M, Arola J, Pajusola K et al. Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. FASEB J 2002; 16: 1041–1049.

    Article  CAS  Google Scholar 

  20. Feng Y, Hu J, Ma J, Feng K, Zhang X, Yang S et al. RNAi-mediated silencing of VEGF-C inhibits non-small cell lung cancer progression by simultaneously down-regulating the CXCR4, CCR7, VEGFR-2 and VEGFR-3-dependent axes-induced ERK, p38 and AKT signalling pathways. Eur J Cancer 2011; 47: 2353–2363.

    Article  CAS  Google Scholar 

  21. Su JL, Yang PC, Shih JY, Yang CY, Wei LH, Hsieh CY et al. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell 2006; 9: 209–223.

    Article  CAS  Google Scholar 

  22. He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 2002; 94: 819–825.

    Article  CAS  Google Scholar 

  23. Sastri M, Barraclough DM, Carmichael PT, Taylor SS . A-kinase-interacting protein localizes protein kinase A in the nucleus. Proc Natl Acad Sci USA 2005; 102: 349–354.

    Article  CAS  Google Scholar 

  24. Kitching R, Li H, Wong MJ, Kanaganayakam S, Kahn H, Seth A . Characterization of a novel human breast cancer associated gene (BCA3) encoding an alternatively spliced proline-rich protein. Biochim Biophys Acta 2003; 1625: 116–121.

    Article  CAS  Google Scholar 

  25. Gao N, Asamitsu K, Hibi Y, Ueno T, Okamoto T . AKIP1 enhances NF-kappaB-dependent gene expression by promoting the nuclear retention and phosphorylation of p65. J Biol Chem 2008; 283: 7834–7843.

    Article  CAS  Google Scholar 

  26. Gao N, Hibi Y, Cueno M, Asamitsu K, Okamoto T . A-kinase-interacting protein 1 (AKIP1) acts as a molecular determinant of PKA in NF-kappaB signaling. J Biol Chem 2010; 285: 28097–28104.

    Article  CAS  Google Scholar 

  27. Scavelli C, Vacca A, Di Pietro G, Dammacco F, Ribatti D . Crosstalk between angiogenesis and lymphangiogenesis in tumor progression. Leukemia 2004; 18: 1054–1058.

    Article  CAS  Google Scholar 

  28. Gomes FG, Nedel F, Alves AM, Nör JE, Tarquinio SB . Tumor angiogenesis and lymphangiogenesis: tumor/endothelial crosstalk and cellular/microenvironmental signaling mechanisms. Life Sci 2013; 92: 101–107.

    Article  CAS  Google Scholar 

  29. Cao Y . Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer 2005; 5: 735–743.

    Article  CAS  Google Scholar 

  30. Alitalo K, Tammela T, Petrova TV . Lymphangiogenesis in development and human disease. Nature 2005; 438: 946–953.

    Article  CAS  Google Scholar 

  31. Krzystek-Korpacka M, Matusiewicz M, Diakowska D, Grabowski K, Blachut K, Banas T . Up-regulation of VEGF-C secreted by cancer cells and not VEGF-A correlates with clinical evaluation of lymph node metastasis in esophageal squamous cell carcinoma (ESCC). Cancer Lett 2007; 249: 171–177.

    Article  CAS  Google Scholar 

  32. Zhang HL, Chen LQ, Liu RL, Shi YT, He M, Meng XL et al. The number of lymph node metastases influences survival and International Union Against Cancer tumor-node-metastasis classification for esophageal squamous cell carcinoma. Dis Esophagus 2010; 23: 53–58.

    Article  CAS  Google Scholar 

  33. Hosch SB, Stoecklein NH, Pichlmeier U, Rehders A, Scheunemann P, Niendorf A et al. Esophageal cancer: the mode of lymphatic tumor cell spread and its prognostic significance. J Clin Oncol 2001; 19: 1970–1975.

    Article  CAS  Google Scholar 

  34. Albini A, Tosetti F, Li VW, Noonan DM, Li WW . Cancer prevention by targeting angiogenesis. Nat Rev Clin Oncol 2012; 9: 498–509.

    Article  CAS  Google Scholar 

  35. Kubota Y, Kaneko K, Konishi K, Ito H, Yamamoto T, Katagiri A et al. The onset of angiogenesis in a multistep process of esophageal squamous cell carcinoma. Front Biosci 2009; 14: 3872–3878.

    Article  CAS  Google Scholar 

  36. Tanigawa N, Matsumura M, Amaya H, Kitaoka A, Shimomatsuya T, Lu C et al. Tumor vascularity correlates with the prognosis of patients with esophageal squamous cell carcinoma. Cancer 1997; 79: 220–225.

    Article  CAS  Google Scholar 

  37. Kitadai Y, Onogawa S, Kuwai T, Matsumura S, Hamada H, Ito M et al. Angiogenic switch occurs during the precancerous stage of human esophageal squamous cell carcinoma. Oncol Rep 2004; 11: 315–319.

    CAS  PubMed  Google Scholar 

  38. Tsai PW, Shiah SG, Lin MT, Wu CW, Kuo ML . Up-regulation of vascular endothelial growth factor C in breast cancer cells by heregulin-beta 1. A critical role of p38/nuclear factor-kappa B signaling pathway. J Biol Chem 2003; 278: 5750–5759.

    Article  CAS  Google Scholar 

  39. Lin C, Song L, Gong H, Liu A, Lin X, Wu J et al. Nkx2-8 downregulation promotes angiogenesis and activates NF-κB in esophageal cancer. Cancer Res 2013; 73: 3638–3648.

    Article  CAS  Google Scholar 

  40. Zhang Y, Du XL, Wang CJ, Lin DC, Ruan X, Feng YB et al. Reciprocal activation between PLK1 and Stat3 contributes to survival and proliferation of esophageal cancer cells. Gastroenterology 2012; 142: 521–530 e523.

    Article  CAS  Google Scholar 

  41. Chen X, Ying Z, Lin X, Lin H, Wu J, Li M et al. Acylglycerol kinase augments JAK2/STAT3 signaling in esophageal squamous cells. J Clin Invest 2013; 123: 2576–2589.

    Article  CAS  Google Scholar 

  42. Andl CD, Mizushima T, Nakagawa H, Oyama K, Harada H, Chruma K et al. Epidermal growth factor receptor mediates increased cell proliferation, migration, and aggregation in esophageal keratinocytes in vitro and in vivo. J Biol Chem 2003; 278: 1824–1830.

    Article  CAS  Google Scholar 

  43. Miebach S, Grau S, Hummel V, Rieckmann P, Tonn JC, Goldbrunner RH . Isolation and culture of microvascular endothelial cells from gliomas of different WHO grades. J Neurooncol 2006; 76: 39–48.

    Article  CAS  Google Scholar 

  44. Shimada Y, Imamura M, Wagata T, Yamaguchi N, Tobe T . Characterization of 21 newly established esophageal cancer cell lines. Cancer 1992; 69: 277–284.

    Article  CAS  Google Scholar 

  45. Sobin LH, Wittekind CH (eds). International Union Against Cancer (UICC). TNM Classification of Malignant Tumours 5th edn. Wiley, New York, 1997, pp 54–58.

    Google Scholar 

  46. Li J, Zhang N, Song LB, Liao WT, Jiang LL, Gong LY et al. Astrocyte elevated gene-1 is a novel prognostic marker for breast cancer progression and overall patient survival. Clin Cancer Res 2008; 14: 3319–3326.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (GDUPS, 2012), Natural Science Foundation of China (81325013, 81071780, 81030048, 91229101, U1201121, 81272196 and 81272198), the Science and Technology Department of Guangdong Province (S2011020002757 and S2012020010946) and Ministry of Education of China (20130171110085, 20120171110055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, C., Song, L., Liu, A. et al. Overexpression of AKIP1 promotes angiogenesis and lymphangiogenesis in human esophageal squamous cell carcinoma. Oncogene 34, 384–393 (2015). https://doi.org/10.1038/onc.2013.559

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.559

Keywords

This article is cited by

Search

Quick links