Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Merlin sumoylation is required for its tumor suppressor activity

Abstract

Merlin, encoded by the Neurofibromatosis 2 (NF2) gene, is a multifunctional tumor suppressor that integrates and regulates extracellular cues and intracellular signaling pathways, both at the plasma membrane and in the nucleus, to control cell proliferation, migration and invasion. Molecular mechanisms regulating merlin’s tumor-suppressive activity have not been clearly defined. Here we report that merlin can be sumoylated on Lysine residue (K76) in vitro and in vivo. Sumoylation mediates merlin’s intramolecular and intermolecular binding activities and regulates its cytoplasm/nucleus trafficking. Interestingly, sumoylation of merlin is regulated by its phosphorylation via Akt and PAK2 kinases. Mutation of K76 into arginine (R) abolishes its sumoylation, disrupts merlin cortical cytoskeleton residency and attenuates its stability. Using a K76R mutant merlin in a subcutaneous U87MG xenograft model, we demonstrate that merlin sumoylation is required for tumor-suppressive activity. Taken together, our findings indicate that merlin is sumoylated and that this post-translational modification is essential for tumor suppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Evans GR, Lloyd SK, Ramsden RT . Neurofibromatosis type 2. Adv Oto-rhino-laryngol 2011; 70: 91–98.

    Article  Google Scholar 

  2. Rouleau GA, Merel P, Lutchman M, Sanson M, Zucman J, Marineau C et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 1993; 363: 515–521.

    Article  CAS  PubMed  Google Scholar 

  3. Trofatter JA, MacCollin MM, Rutter JL, Murrell JR, Duyao MP, Parry DM et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 1993; 75: 826.

    Article  CAS  PubMed  Google Scholar 

  4. Tsukita S, Oishi K, Sato N, Sagara J, Kawai A, Tsukita S . ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol 1994; 126: 391–401.

    Article  CAS  PubMed  Google Scholar 

  5. Chishti AH, Kim AC, Marfatia SM, Lutchman M, Hanspal M, Jindal H et al. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 1998; 23: 281–282.

    Article  CAS  PubMed  Google Scholar 

  6. Hamada K, Shimizu T, Matsui T, Tsukita S, Hakoshima T . Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J 2000; 19: 4449–4462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Okada T, Lopez-Lago M, Giancotti FG . Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol 2005; 171: 361–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shaw RJ, Paez JG, Curto M, Yaktine A, Pruitt WM, Saotome I et al. The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev Cell 2001; 1: 63–72.

    Article  CAS  PubMed  Google Scholar 

  9. James MF, Han S, Polizzano C, Plotkin SR, Manning BD, Stemmer-Rachamimov AO et al. NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol 2009; 29: 4250–4261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lopez-Lago MA, Okada T, Murillo MM, Socci N, Giancotti FG . Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling. Mol Cell Biol 2009; 29: 4235–4249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cole BK, Curto M, Chan AW, McClatchey AI . Localization to the cortical cytoskeleton is necessary for Nf2/merlin-dependent epidermal growth factor receptor silencing. Mol Cell Biol 2008; 28: 1274–1284.

    Article  CAS  PubMed  Google Scholar 

  12. Ammoun S, Flaiz C, Ristic N, Schuldt J, Hanemann CO . Dissecting and targeting the growth factor-dependent and growth factor-independent extracellular signal-regulated kinase pathway in human schwannoma. Cancer Res 2008; 68: 5236–5245.

    Article  CAS  PubMed  Google Scholar 

  13. Rong R, Tang X, Gutmann DH, Ye K . Neurofibromatosis 2 (NF2) tumor suppressor merlin inhibits phosphatidylinositol 3-kinase through binding to PIKE-L. Proc Natl Acad Sci USA 2004; 101: 18200–18205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Poulikakos PI, Xiao GH, Gallagher R, Jablonski S, Jhanwar SC, Testa JR . Re-expression of the tumor suppressor NF2/merlin inhibits invasiveness in mesothelioma cells and negatively regulates FAK. Oncogene 2006; 25: 5960–5968.

    Article  CAS  PubMed  Google Scholar 

  15. Okada M, Wang Y, Jang SW, Tang X, Neri LM, Ye K . Akt phosphorylation of merlin enhances its binding to phosphatidylinositols and inhibits the tumor-suppressive activities of merlin. Cancer Res 2009; 69: 4043–4051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gutmann DH, Sherman L, Seftor L, Haipek C, Hoang Lu K, Hendrix M . Increased expression of the NF2 tumor suppressor gene product, merlin, impairs cell motility, adhesionand spreading. Hum Mol Genet 1999; 8: 267–275.

    Article  CAS  PubMed  Google Scholar 

  17. Gutmann DH, Haipek CA, Hoang LuK . Neurofibromatosis 2 tumor suppressor protein, merlin, forms two functionally important intramolecular associations. J Neurosci Res 1999; 58: 706–716.

    Article  CAS  PubMed  Google Scholar 

  18. Sherman L, Xu HM, Geist RT, Saporito-Irwin S, Howells N, Ponta H et al. Interdomain binding mediates tumor growth suppression by the NF2 gene product. Oncogene 1997; 15: 2505–2509.

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez-Agosti C, Wiederhold T, Herndon ME, Gusella J, Ramesh V . Interdomain interaction of merlin isoforms and its influence on intermolecular binding to NHE-RF. J Biol Chem 1999; 274: 34438–34442.

    Article  CAS  PubMed  Google Scholar 

  20. Gutmann DH, Geist RT, Xu H, Kim JS, Saporito-Irwin S . Defects in neurofibromatosis 2 protein function can arise at multiple levels. Hum Mol Genet 1998; 7: 335–345.

    Article  CAS  PubMed  Google Scholar 

  21. Meng JJ, Lowrie DJ, Sun H, Dorsey E, Pelton PD, Bashour AM et al. Interaction between two isoforms of the NF2 tumor suppressor protein, merlin, and between merlin and ezrin, suggests modulation of ERM proteins by merlin. J Neurosci Res 2000; 62: 491–502.

    Article  CAS  PubMed  Google Scholar 

  22. Kissil JL, Johnson KC, Eckman MS, Jacks T . Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J Biol Chem 2002; 277: 10394–10399.

    Article  CAS  PubMed  Google Scholar 

  23. Wei BL, Arora VK, Raney A, Kuo LS, Xiao GH, O’Neill E et al. Activation of p21-activated kinase 2 by human immunodeficiency virus type 1 Nef induces merlin phosphorylation. J Virol 2005; 79: 14976–14980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiao GH, Beeser A, Chernoff J, Testa JR . p21-activated kinase links Rac/Cdc42 signaling to merlin. J Biol Chem 2002; 277: 883–886.

    Article  CAS  PubMed  Google Scholar 

  25. Tang X, Jang SW, Wang X, Liu Z, Bahr SM, Sun SY et al. Akt phosphorylation regulates the tumour-suppressor merlin through ubiquitination and degradation. Nat Cell Biol 2007; 9: 1199–1207.

    Article  CAS  PubMed  Google Scholar 

  26. Li W, You L, Cooper J, Schiavon G, Pepe-Caprio A, Zhou L et al. Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4(DCAF1) in the nucleus. Cell 2010; 140: 477–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bettermann K, Benesch M, Weis S, Haybaeck J . SUMOylation in carcinogenesis. Cancer Lett 2012; 316: 113–125.

    Article  CAS  PubMed  Google Scholar 

  28. Muller S, Hoege C, Pyrowolakis G, Jentsch S . SUMO, ubiquitin’s mysterious cousin. Nat Rev 2001; 2: 202–210.

    Article  CAS  Google Scholar 

  29. Hilgarth RS, Murphy LA, Skaggs HS, Wilkerson DC, Xing H, Sarge KD . Regulation and function of SUMO modification. J Biol Chem 2004; 279: 53899–53902.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Dasso M . SUMOylation and deSUMOylation at a glance. J Cell Sci 2009; 122 (Pt 23): 4249–4252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT . SUMO-1 modification activates the transcriptional response of p53. EMBO J 1999; 18: 6455–6461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stamenkovic I, Yu Q . Merlin, a ‘magic’ linker between extracellular cues and intracellular signaling pathways that regulate cell motility, proliferation, and survival. Curr Protein Peptide Sci 2010; 11: 471–484.

    Article  CAS  Google Scholar 

  33. Lu J, Zou J, Wu H, Cai L . Compensative shuttling of merlin to phosphorylation on serine 518 in vestibular schwannoma. Laryngoscope 2008; 118: 169–174.

    Article  PubMed  Google Scholar 

  34. Rong R, Surace EI, Haipek CA, Gutmann DH, Ye K . Serine 518 phosphorylation modulates merlin intramolecular association and binding to critical effectors important for NF2 growth suppression. Oncogene 2004; 23: 8447–8454.

    Article  CAS  PubMed  Google Scholar 

  35. Alfthan K, Heiska L, Gronholm M, Renkema GH, Carpen O . Cyclic AMP-dependent protein kinase phosphorylates merlin at serine 518 independently of p21-activated kinase and promotes merlin-ezrin heterodimerization. J Biol Chem 2004; 279: 18559–18566.

    Article  CAS  PubMed  Google Scholar 

  36. Mani T, Hennigan RF, Foster LA, Conrady DG, Herr AB, Ip W . FERM domain phosphoinositide binding targets merlin to the membrane and is essential for its growth-suppressive function. Mol Cell Biol 2011; 31: 1983–1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yi C, Troutman S, Fera D, Stemmer-Rachamimov A, Avila JL, Christian N et al. A tight junction-associated Merlin-angiomotin complex mediates Merlin’s regulation of mitogenic signaling and tumor suppressive functions. Cancer Cell 2011; 19: 527–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lallemand D, Curto M, Saotome I, Giovannini M, McClatchey AI . NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev 2003; 17: 1090–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lallemand D, Manent J, Couvelard A, Watilliaux A, Siena M, Chareyre F et al. Merlin regulates transmembrane receptor accumulation and signaling at the plasma membrane in primary mouse Schwann cells and in human schwannomas. Oncogene 2009; 28: 854–865.

    Article  CAS  PubMed  Google Scholar 

  40. Maitra S, Kulikauskas RM, Gavilan H, Fehon RG . The tumor suppressors Merlin and Expanded function cooperatively to modulate receptor endocytosis and signaling. Curr Biol 2006; 16: 702–709.

    Article  CAS  PubMed  Google Scholar 

  41. Muller S, Matunis MJ, Dejean A . Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 1998; 17: 61–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gill G . SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 2004; 18: 2046–2059.

    Article  CAS  PubMed  Google Scholar 

  43. Curto M, Cole BK, Lallemand D, Liu CH, McClatchey AI . Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J Cell Biol 2007; 177: 893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lau YK, Murray LB, Houshmandi SS, Xu Y, Gutmann DH, Yu Q . Merlin is a potent inhibitor of glioma growth. Cancer Res 2008; 68: 5733–5742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bae SH, Jeong JW, Park JA, Kim SH, Bae MK, Choi SJ et al. Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem Biophys Res Commun 2004; 324: 394–400.

    Article  CAS  PubMed  Google Scholar 

  46. de Cristofaro T, Mascia A, Pappalardo A, D’Andrea B, Nitsch L, Zannini M . Pax8 protein stability is controlled by sumoylation. J Mol Endocrinol 2009; 42: 35–46.

    Article  CAS  PubMed  Google Scholar 

  47. Rajan S, Plant LD, Rabin ML, Butler MH, Goldstein SA . Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell 2005; 121: 37–47.

    Article  CAS  PubMed  Google Scholar 

  48. Martin S, Nishimune A, Mellor JR, Henley JM . SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature 2007; 447: 321–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jukam D, Desplan C . Binary regulation of Hippo pathway by Merlin/NF2, Kibra, Lgl, and Melted specifies and maintains postmitotic neuronal fate. Dev Cell 2011; 21: 874–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biology 2006; 8: 27–36.

    Article  CAS  PubMed  Google Scholar 

  51. Murray LB, Lau YK, Yu Q . Merlin is a negative regulator of human melanoma growth. PloS One 2012; 7: e43295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kressel M, Schmucker B . Nucleocytoplasmic transfer of the NF2 tumor suppressor protein merlin is regulated by exon 2 and a CRM1-dependent nuclear export signal in exon 15. Hum Mol Genet 2002; 11: 2269–2278.

    Article  CAS  PubMed  Google Scholar 

  53. Gascard P, Nunomura W, Lee G, Walensky LD, Krauss SW, Takakuwa Y et al. Deciphering the nuclear import pathway for the cytoskeletal red cell protein 4.1R. Mol Biol Cell 1999; 10: 1783–1798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Muranen T, Gronholm M, Renkema GH, Carpen O . Cell cycle-dependent nucleocytoplasmic shuttling of the neurofibromatosis 2 tumour suppressor merlin. Oncogene 2005; 24: 1150–1158.

    Article  CAS  PubMed  Google Scholar 

  55. Brault E, Gautreau A, Lamarine M, Callebaut I, Thomas G, Goutebroze L . Normal membrane localization and actin association of the NF2 tumor suppressor protein are dependent on folding of its N-terminal domain. J Cell Sci 2001; 114 (Pt 10): 1901–1912.

    CAS  PubMed  Google Scholar 

  56. Konopacki FA, Jaafari N, Rocca DL, Wilkinson KA, Chamberlain S, Rubin P et al. Agonist-induced PKC phosphorylation regulates GluK2 SUMOylation and kainate receptor endocytosis. Proc Natl Acad Sci USA 2011; 108: 19772–19777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vanhatupa S, Ungureanu D, Paakkunainen M, Silvennoinen O . MAPK-induced Ser727 phosphorylation promotes SUMOylation of STAT1. Biochem J 2008; 409: 179–185.

    Article  CAS  PubMed  Google Scholar 

  58. Desterro JM, Rodriguez MS, Hay RT . SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 1998; 2: 233–239.

    Article  CAS  PubMed  Google Scholar 

  59. Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L et al. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 2008; 10: 547–555.

    Article  CAS  PubMed  Google Scholar 

  60. Li W, Cooper J, Karajannis MA, Giancotti FG . Merlin: a tumour suppressor with functions at the cell cortex and in the nucleus. EMBO Rep 2012; 13: 204–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sher I, Hanemann CO, Karplus PA, Bretscher A . The tumor suppressor merlin controls growth in its open state, and phosphorylation converts it to a less-active more-closed state. Dev Cell 2012; 22: 703–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Merrill JC, Kagey MH, Melhuish TA, Powers SE, Zerlanko BJ, Wotton D . Inhibition of CtBP1 activity by Akt-mediated phosphorylation. J Mol Biol 2010; 398: 657–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yu J, Zhang SS, Saito K, Williams S, Arimura Y, Ma Y et al. PTEN regulation by Akt-EGR1-ARF-PTEN axis. EMBO J 2009; 28: 21–33.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project has been funded in whole or in part with Federal Funds from the National Cancer Institute, National Institutes of Health R01 (CA127119 to K Ye). We thank Dr Jolinda Traugh for providing various PAK2 plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Ye.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, Q., Liu, X., Brat, D. et al. Merlin sumoylation is required for its tumor suppressor activity. Oncogene 33, 4893–4903 (2014). https://doi.org/10.1038/onc.2013.438

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.438

Keywords

This article is cited by

Search

Quick links