Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CD84 is a survival receptor for CLL cells

Abstract

Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of CD5+ B lymphocytes in peripheral blood, lymphoid organs and bone marrow. The main feature of the disease is accumulation of the malignant cells due to decreased apoptosis. CD84 belongs to the signaling lymphocyte activating molecule family of immunoreceptors, and has an unknown function in CLL cells. Here, we show that the expression of CD84 is significantly elevated from the early stages of the disease, and is regulated by macrophage migration inhibitory factor and its receptor, CD74. Activation of cell surface CD84 initiates a signaling cascade that enhances CLL cell survival. Both downmodulation of CD84 expression and its immune-mediated blockade induce cell death in vitro and in vivo. In addition, analysis of samples derived from an on-going clinical trial, in which human subjects were treated with humanized anti-CD74 (milatuzumab), shows a decrease in CD84 messenger RNA and protein levels in milatuzumab-treated cells. This downregulation was correlated with reduction of Bcl-2 and Mcl-1 expression. Thus, our data show that overexpression of CD84 in CLL is an important survival mechanism that appears to be an early event in the pathogenesis of the disease. These findings suggest novel therapeutic strategies based on the blockade of this CD84-dependent survival pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Caligaris-Cappio F, Hamblin TJ . B-cell chronic lymphocytic leukemia: a bird of a different feather. J Clin Oncol 1999; 17: 399–408.

    Article  CAS  Google Scholar 

  2. Stumptner-Cuvelette P, Benaroch P . Multiple roles of the invariant chain in MHC class II function. Biochimica et biophysica acta 2002; 1542: 1–13.

    Article  CAS  Google Scholar 

  3. Shachar I, Flavell RA . Requirement for invariant chain in B cell maturation and function. Science 1996; 274: 106–108.

    Article  CAS  Google Scholar 

  4. Matza D, Lantner D, Bogoch Y, Flaishon L, Hershkoviz R, Shachar I . Invariant chain induces B cell maturation in a process which is independent of its chaperonic activity. Proc Natl Acad Sci USA 2002; 99: 3018–3023.

    Article  CAS  Google Scholar 

  5. Matza D, Kerem A, Shachar I . Invariant chain, a chain of command. Trends Immunol. 2003; 24: 246–248.

    Article  Google Scholar 

  6. Starlets D, Gore Y, Binsky I, Haran M, Harpaz N, Shvidel L et al. Cell Surface CD74 initiates a signaling cascade leading to cell proliferation and survival. Blood 2006; 107: 4807–4816.

    Article  CAS  Google Scholar 

  7. Gore Y, Starlets D, Maharshak N, Becker-Herman S, Kaneyuki U, Leng L et al. Macrophage migration inhibitory factor (MIF) induces B cell survival by activation of a CD74/CD44 receptor complex. J Biol Chem 2008; 283: 2784–2792.

    Article  CAS  Google Scholar 

  8. Gordin M, Tesio M, Cohen S, Gore Y, Lantner F, Leng L et al. c-Met and its ligand hepatocyte growth factor/scatter factor regulate mature B cell survival in a pathway induced by CD74. J Immunol 2010; 185: 2020–2031.

    Article  CAS  Google Scholar 

  9. Binsky I, Haran M, Starlets D, Gore Y, Lantner F, Harpaz N et al. IL-8 secreted in a macrophage migration-inhibitory factor- and CD74-dependent manner regulates B cell chronic lymphocytic leukemia survival. Proc Natl Acad Sci USA 2007; 104: 13408–13413.

    Article  CAS  Google Scholar 

  10. Binsky I, Lantner F, Grabovsky V, Harpaz N, Shvidel L, Berrebi A et al. TAp63 regulates VLA-4 expression and CLL cell migration to the BM in a CD74 dependent manner. J Immunol 2010; 184: 4761–4769.

    Article  CAS  Google Scholar 

  11. Cohen S, Shoshana OY, Zelman-Toister E, Maharshak N, Binsky-Ehrenreich I, Gordin M et al. The cytokine midkine and its receptor RPTPzeta regulate B cell survival in a pathway induced by CD74. J Immunol 2012; 188: 259–269.

    Article  CAS  Google Scholar 

  12. Stein R, Qu Z, Cardillo TM, Chen S, Rosario A, Horak ID et al. Antiproliferative activity of a humanized anti-CD74 monoclonal antibody, hLL1, on B-cell malignancies. Blood 2004; 104: 3705–3711.

    Article  CAS  Google Scholar 

  13. de laFuente MA, Pizcueta P, Nadal M, Bosch J, Engel P . CD84 leukocyte antigen is a new member of the Ig superfamily. Blood 1997; 90: 2398–2405.

    CAS  Google Scholar 

  14. Martin M, Romero X, de la Fuente MA, Tovar V, Zapater N, Esplugues E et al. CD84 functions as a homophilic adhesion molecule and enhances IFN-gamma secretion: Adhesion is mediated by Ig-like domain 1. J Immunol 2001; 167: 3668–3676.

    Article  CAS  Google Scholar 

  15. Romero X, Zapater N, Calvo M, Kalko SG, de la Fuente MA, Tovar V et al. CD229 (Ly9) lymphocyte cell surface receptor interacts homophilically through its N-terminal domain and relocalizes to the immunological synapse. J Immunol 2005; 174: 7033–7042.

    Article  CAS  Google Scholar 

  16. Yan QR, Malashkevich VN, Fedorov A, Fedorov E, Cao E, Lary JW et al. Structure of CD84 provides insight into SLAM family function. Proc Natl Acad Sci USA 2007; 104: 10583–10588.

    Article  CAS  Google Scholar 

  17. Cocks BG, Chang CCJ, Carballido JM, Yssel H, Devries JE, Aversa G . A novel receptor involved in T-cell activation. Nature 1995; 376: 260–263.

    Article  CAS  Google Scholar 

  18. Engel P, Eck MJ, Terhorst C . The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nat Rev Immunol 2003; 3: 813–821.

    Article  CAS  Google Scholar 

  19. Veillette A, Latour S . The SLAM family of immune-cell receptors. Curr Opin Immunol 2003; 15: 277–285.

    Article  CAS  Google Scholar 

  20. Nichols KE, Ma CS, Cannons JL, Schwartzberg PL, Tangye SG . Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunol Rev 2005; 203: 180–199.

    Article  CAS  Google Scholar 

  21. Latour S, Veillette A . The SAP family of adaptors in immune regulation. Semin Immunol 2004; 16: 409–419.

    Article  CAS  Google Scholar 

  22. Tangye SG, van de Weerdt BCM, Avery DT, Hodgkin PD . CD84 is up-regulated on a major population of human memory B cells and recruits the SH2 domain containing proteins SAP and EAT-2. Eur J Immunol 2002; 32: 1640–1649.

    Article  CAS  Google Scholar 

  23. Veillette A . Immune regulation by SLAM family receptors and SAP-related adaptors. Nat Rev Immunol 2006; 6: 56–66.

    Article  CAS  Google Scholar 

  24. Cannons JL, Qi H, Lu KT, Dutta M, Gomez-Rodriguez J, Cheng J et al. Optimal germinal center responses require a multistage T cell:B cell adhesion process involving ntegrins SLAM-Associated Protein, and CD84. Immunity 2010; 32: 253–265.

    Article  CAS  Google Scholar 

  25. Palou E, Pirotto F, Sole J, Freed JH, Peral B, Vilardell C et al. Genomic characterization of CD84 reveals the existence of five isoforms differing in their cytoplasmic domains. Tissue Antigens 2000; 55: 118–127.

    Article  CAS  Google Scholar 

  26. Dios A, Mitchell RA, Aljabari B, Lubetsky J, O'Connor K, Liao H et al. Inhibition of MIF bioactivity by rational design of pharmacological inhibitors of MIF tautomerase activity. J Med Chem 2002; 45: 2410–2416.

    Article  CAS  Google Scholar 

  27. Nagy N, Cerboni C, Mattsson K, Maeda A, Gogolak P, Sumegi J et al. SH2D1A and SLAM protein expression in human lymphocytes and derived cell lines. Int J Cancer 2000; 88: 439–447.

    Article  CAS  Google Scholar 

  28. Morra M, Lu J, Poy F, Martin M, Sayos J, Calpe S et al. Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells. EMBO J 2001; 20: 5840–5852.

    Article  CAS  Google Scholar 

  29. Calpe S, Erdos E, Liao GX, Wang NH, Rietdijk S, Simarro M et al. Identification and characterization of two related murine genes, Eat2a and Eat2b, encoding single SH2-domain adapters. Immunogenetics 2006; 58: 15–25.

    Article  CAS  Google Scholar 

  30. Inabe K, Kurosaki T . Tyrosine phosphorylation of B-cell adaptor for phosphoinositide 3-kinase is required for Akt activation in response to CD19 engagement. Blood 2002; 99: 584–589.

    Article  CAS  Google Scholar 

  31. Oliver-Vila I, Saborit-Villarroya I, Engel P, Martin M . The leukocyte receptor CD84 inhibits Fc epsilon RI-mediated signaling through homophilic interaction in transfected RBL-2H3 cells. Mol Immunol 2008; 45: 2138–2149.

    Article  CAS  Google Scholar 

  32. Nanda N, Andre P, Bao M, Clauser K, Deguzman F, Howie D et al. Platelet aggregation induces platelet aggregate stability via SLAM family receptor signaling. Blood 2005; 106: 3028–3034.

    Article  CAS  Google Scholar 

  33. Durig J, Ebeling P, Grabellus F, Sorg UR, Mollmann M, Schutt P et al. A novel nonobese diabetic/severe combined immunodeficient xenograft model for chronic lymphocytic leukemia reflects important clinical characteristics of the disease. Cancer Res 2007; 67: 8653–8661.

    Article  Google Scholar 

  34. Hartmann TN, Grabovsky V, Wang W, Desch P, Rubenzer G, Wollner S et al. Circulating B-cell chronic lymphocytic leukemia cells display impaired migration to lymph nodes and bone marrow. Cancer Res 2009; 69: 3121–3130.

    Article  CAS  Google Scholar 

  35. Goldman JP, Blundell MP, Lopes L, Kinnon C, Di Santo JP, Thrasher AJ . Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol 1998; 103: 335–342.

    Article  CAS  Google Scholar 

  36. Meyer-Siegler K, Hudson PB . Enhanced expression of macrophage migration inhibitory factor in prostatic adenocarcinoma metastases. Urology 1996; 48: 448–452.

    Article  CAS  Google Scholar 

  37. Bando H, Matsumoto G, Bando M, Muta M, Ogawa T, Funata N et al. Expression of macrophage migration inhibitory factor in human breast cancer: association with nodal spread. Jpn J Cancer Res 2002; 93: 389–396.

    Article  CAS  Google Scholar 

  38. Nishihira J, Ishibashi T, Fukushima T, Sun B, Sato Y, Todo S . Macrophage migration inhibitory factor (MIF): its potential role in tumor growth and tumor-associated angiogenesis. Ann NY Acad Sci 2003; 995: 171–182.

    Article  CAS  Google Scholar 

  39. Chesney J, Metz C, Bacher M, Peng T, Meinhardt A, Bucala R . An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. Mol Med 1999; 5: 181–191.

    Article  CAS  Google Scholar 

  40. Bifulco C, McDaniel K, Leng L, Bucala R . Tumor growth-promoting properties of macrophage migration inhibitory factor. Curr Pharm Des 2008; 14: 3790–3801.

    Article  CAS  Google Scholar 

  41. Meyer-Siegler KL, Leifheit EC, Vera PL . Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells. BMC Cancer 2004; 4: 34–45.

    Article  Google Scholar 

  42. Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Iwashige H, Aridome K et al. Invariant chain expression in gastric cancer. Cancer Lett 2001; 168: 87–91.

    Article  CAS  Google Scholar 

  43. Young AN, Amin MB, Moreno CS, Lim SD, Cohen C, Petros JA et al. Expression profiling of renal epithelial neoplasms: a method for tumor classification and discovery of diagnostic molecular markers. Am J Pathol 2001; 158: 1639–1651.

    Article  CAS  Google Scholar 

  44. Ioachim HL, Pambuccian SE, Hekimgil M, Giancotti FR, Dorsett BH . Lymphoid monoclonal antibodies reactive with lung tumors. Diagnostic applications. Am J Surg Pathol 1996; 20: 64–71.

    Article  CAS  Google Scholar 

  45. Datta MW, Shahsafaei A, Nadler LM, Freeman GJ, Dorfman DM . Expression of MHC class II-associated invariant chain (Ii;CD74) in thymic epithelial neoplasms. Appl Immunohistochem Mol Morphol 2000; 8: 210–215.

    CAS  PubMed  Google Scholar 

  46. Lazova R, Moynes R, May D, Scott G . LN-2 (CD74). A marker to distinguish atypical fibroxanthoma from malignant fibrous histiocytoma. Cancer 1997; 79: 2115–2124.

    Article  CAS  Google Scholar 

  47. Narni F, Kudo J, Mars W, Calabretta B, Florine DL, Barlogie B et al. HLA-DR-associated invariant chain is highly expressed in chronic lymphocytic leukemia. Blood 1986; 68: 372–377.

    CAS  PubMed  Google Scholar 

  48. Veenstra H, Jacobs P, Dowdle EB . Abnormal association between invariant chain and HLA class II alpha and beta chains in chronic lymphocytic leukemia. Cell Immunol 1996; 171: 68–73.

    Article  CAS  Google Scholar 

  49. Mizue Y, Nishihira J, Miyazaki T, Fujiwara S, Chida M, Nakamura K et al. Quantitation of macrophage migration inhibitory factor (MIF) using the one-step sandwich enzyme immunosorbent assay: elevated serum MIF concentrations in patients with autoimmune diseases and identification of MIF in erythrocytes. Int J Mol Med 2000; 5: 397–403.

    CAS  PubMed  Google Scholar 

  50. Howie D, Simarro M, Sayos J, Guirado M, Sancho J, Terhorst C . Molecular dissection of the signaling and costimulatory functions of CD150 (SLAM): CD150/SAP binding and CD150-mediated costimulation. Blood 2002; 99: 957–965.

    Article  CAS  Google Scholar 

  51. Haran M, Chebatco S, Flaishon L, Lantner F, Harpaz N, Valinsky L et al. Grb7 expression and cellular migration in chronic lymphocytic leukemia: a comparative study of early and advanced stage disease. Leukemia 2004; 18: 1948–1950.

    Article  CAS  Google Scholar 

  52. Kay S, Herishanu Y, Pick M, Rogowski O, Baron S, Naparstek E et al. Quantitative flow cytometry of ZAP-70 levels in chronic lymphocytic leukemia using molecules of equivalent soluble fluorochrome. Cytometry B Clin Cytom 2006; 70B: 218–226.

    Article  CAS  Google Scholar 

  53. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.

    Article  CAS  Google Scholar 

  54. Cheson BD, Bennett JM, Grever M, Kay N, Keating MJ, O'Brien S et al. National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood 1996; 87: 4990–4997.

    CAS  Google Scholar 

  55. Bernhagen J, Mitchell RA, Calandra T, Voelter W, Cerami A, Bucala R . Purification, bioactivity, and secondary structure analysis of mouse and human macrophage migration inhibitory factor (MIF). Biochemistry 1994; 33: 14144–14155.

    Article  CAS  Google Scholar 

  56. Stein R, Mattes MJ, Cardillo TM, Hansen HJ, Chang CH, Burton J et al. CD74: A new candidate target for the immunotherapy of B-Cell neoplasms. Clin Cancer Res 2007; 13: 5556S–5563S.

    Article  CAS  Google Scholar 

  57. Matza D, Kerem A, Lantner F, Shachar I . Invariant chain induced B cell differentiation requires intramembrane - proteolytic release of the cytosolic domain. Immunity 2002; 17: 549–560.

    Article  CAS  Google Scholar 

  58. Flaishon L, Becker-Herman S, Hart G, Levo Y, Kuziel WA, Shachar I . Expression of the Chemokine Receptor CCR2 on Immature B cells Negatively Regulates their Cytoskeletal Rearrangement and Migration. Blood 2004; 104: 933–941.

    Article  CAS  Google Scholar 

  59. Luger D, Dayan M, Zinger H, Liu JP, Mozes E . A peptide based on the complementarity determining region 1 of a human monoclonal autoantibody ameliorates spontaneous and induced lupus manifestations in correlation with cytokine immunomodulation. J Clin Immunol 2004; 24: 579–590.

    Article  CAS  Google Scholar 

  60. Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J et al. MIF Signal Transduction Initiated by Binding to CD74. J Exp Med 2003; 197: 1467–1476.

    Article  CAS  Google Scholar 

  61. Matza D, Wolstein O, Dikstein R, Shachar I . Invariant Chain Induces B Cell Maturation by Activating TAFII105-NF-kB Dependent Transcription Program. J Biol Chem 2001; 276: 27203–27206.

    Article  CAS  Google Scholar 

  62. Ho MK, Springer TA . Preparation and use of monoclonal antimacrophage antibodies. Methods Enzymol 1984; 108: 313–324.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge members of the Shachar laboratory team for helpful discussions. This research was supported by the Israel Science Foundation, the Israel Cancer Association, The Gurwin Foundation, Israel Cancer Research Foundation (ICRF), the NIH and the Alliance for Lupus Research (RB, LL), and in part by USPHS grant PO1-CA103985 from the National Cancer Institute, NIH (DMG), and by the United Israel Appeal of Canada. I Shachar is the incumbent of the Dr Morton and Ann Kleiman Professorial Chair.

Author contribution: IB-E designed and performed most of the experiments, analyzed results, wrote the paper. AM designed and performed some of the experiments, analyzed results, participated in writing the paper. MCS designed and performed some of the experiments, analyzed results, participated in writing the paper. LS provided reagents, participated in designing the clinical protocol. AB supervised some of the experiments. IH-H provided reagents. SK and AA purified reagent. I Sagi provided reagent, discussed some of the results. DMG provided reagents and participated in writing the paper. LL provided reagents. RB provided reagents and participated in writing the paper. YH provided reagents, performed several experiments, discussed some of the results, MH provided reagents, designed and supervised the clinical protocol. I Shachar designed and supervised the experiments, analyzed the results and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Shachar.

Ethics declarations

Competing interests

DMG is a director and stockholder of Immunomedics, Inc., which is developing the hLL1 mAb.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binsky-Ehrenreich, I., Marom, A., Sobotta, M. et al. CD84 is a survival receptor for CLL cells. Oncogene 33, 1006–1016 (2014). https://doi.org/10.1038/onc.2013.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.31

Keywords

This article is cited by

Search

Quick links