Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Functions of TAp63 and p53 in restraining the development of metastatic cancer

Abstract

Many tumours harbour mutations in the p53 tumour-suppressor gene that result in the expression of a mutant p53 protein. This mutant p53 protein has, in most cases, lost wild-type transcriptional activity and can also acquire novel functions in promoting invasion and metastasis. One of the mechanisms underlying these novel functions involves the ability of the mutant p53 to interfere with other transcription factors, including the p53 family protein TAp63. To investigate whether simultaneous depletion of both p53 and TAp63 can recapitulate the effect of mutant p53 expression in vivo, we used a mouse model of pancreatic cancer in which the expression of mutant p53 resulted in the rapid appearance of primary tumours and metastases. As shown previously, loss of one allele of wild-type (WT) p53 accelerated tumour development. A change of one WT p53 allele into mutant p53 did not further accelerate tumour development, but did promote the formation of metastasis. By contrast, loss of TAp63 did not significantly accelerate tumour development or metastasis. However, simultaneous depletion of p53 and TAp63 led to both rapid tumour development and metastatic potential, although the incidence of metastases remained lower than that seen in mutant p53-expressing tumours. TAp63/p53-null cells derived from these mice also showed an enhanced ability to scatter and invade in tissue culture as was observed in mutant p53 cells. These data suggest that depletion of TAp63 in a p53-null tumour can promote metastasis and recapitulate—to some extent—the consequences of mutant p53 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco modified eagles medium

FBS:

fetal bovine serum

HGF:

hepatocyte growth factor

PDAC:

pancreatic ductal adenocarcinoma

RCP:

Rab coupling protein

WT:

wild type

TAp63:

transactivating domain-containing p63

ΔN:

amino-deleted p63

References

  1. Bergholz J, Xiao ZX . Role of p63 in development, tumorigenesis and cancer progression. Cancer Microenviron 2012; 5: 311–322.

    Article  CAS  Google Scholar 

  2. Levine AJ, Tomasini R, McKeon FD, Mak TW, Melino G . The p53 family: guardians of maternal reproduction. Nat Rev Mol Cell Biol 2011; 12: 259–265.

    Article  CAS  Google Scholar 

  3. Su X, Chakravarti D, Flores ER . p63 steps into the limelight: crucial roles in the suppression of tumorigenesis and metastasis. Nat Rev Cancer 2012; 13: 136–143.

    Article  Google Scholar 

  4. Romano RA, Smalley K, Magraw C, Serna VA, Kurita T, Raghavan S et al. DeltaNp63 knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development 2012; 139: 772–782.

    Article  CAS  Google Scholar 

  5. Koster MI, Dai D, Marinari B, Sano Y, Costanzo A, Karin M et al. p63 induces key target genes required for epidermal morphogenesis. Proc Natl Acad Sci USA 2007; 104: 3255–3260.

    Article  CAS  Google Scholar 

  6. Mangiulli M, Valletti A, Caratozzolo MF, Tullo A, Sbisa E, Pesole G et al. Identification and functional characterization of two new transcriptional variants of the human p63 gene. Nucleic Acids Res 2009; 37: 6092–6104.

    Article  CAS  Google Scholar 

  7. Melino G . p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ 2011; 18: 1487–1499.

    Article  CAS  Google Scholar 

  8. Su X, Gi YJ, Chakravarti D, Chan IL, Zhang A, Xia X et al. TAp63 Is a Master Transcriptional Regulator of Lipid and Glucose Metabolism. Cell Metab 2012; 16: 511–525.

    Article  CAS  Google Scholar 

  9. Su X, Chakravarti D, Cho MS, Liu L, Gi YJ, Lin Y et al. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 2010; 467: 986–991.

    Article  CAS  Google Scholar 

  10. Guo X, Keyes WM, Papazoglu C, Zuber J, Li W, Lowe SW et al. TAp63 induces senescence and suppresses tumorigenesis in vivo. Nat Cell Biol 2009; 11: 1451–1457.

    Article  CAS  Google Scholar 

  11. Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B et al. A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 2009; 137: 87–98.

    Article  CAS  Google Scholar 

  12. Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S et al. Mutant p53 drives invasion by promoting integrin recycling. Cell 2009; 139: 1327–1341.

    Article  Google Scholar 

  13. Lozano G . The oncogenic roles of p53 mutants in mouse models. Current Opin Genet Dev 2007; 17: 66–70.

    Article  CAS  Google Scholar 

  14. Girardini JE, Napoli M, Piazza S, Rustighi A, Marotta C, Radaelli E et al. A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell 2011; 20: 79–91.

    Article  CAS  Google Scholar 

  15. Neilsen PM, Noll JE, Mattiske S, Bracken CP, Gregory PA, Schulz RB et al. Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene 2012; 32: 2992–3000.

    Article  Google Scholar 

  16. Tucci P, Agostino M, Grespi F, Marker EK, Terrinoni A, Vousden KH et al. Loss of p63 and its miR-205 target results in enhanced cell migration and metastasis in prostate cancer. Proc Natl Acad Sci USA 2012; 109: 15312–15317.

    Article  CAS  Google Scholar 

  17. Neilsen PM, Noll JE, Suetani RJ, Schulz RB, Al-Ejeh F, Evdokiou A et al. Mutant p53 uses p63 as a molecular chaperone to alter gene expression and induce a pro-invasive secretome. Oncotarget 2011; 2: 1203–1217.

    Article  Google Scholar 

  18. Dong P, Karaayvaz M, Jia N, Kaneuchi M, Hamada J, Watari H et al. Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene 2012; 32: 1203–1217.

    Google Scholar 

  19. Wang W, Cheng B, Miao L, Mei Y, Wu M . Mutant p53-R273H gains new function in sustained activation of EGFR signaling via suppressing miR-27a expression. Cell Death Dis 2013; 4: e574.

    Article  CAS  Google Scholar 

  20. Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 2006; 10: 191–202.

    Article  CAS  Google Scholar 

  21. Freed-Pastor WA, Mizuno H, Zhao X, Langerod A, Moon SH, Rodriguez-Barrueco R et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 2012; 148: 244–258.

    Article  CAS  Google Scholar 

  22. Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C . A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 2001; 21: 1874–1887.

    Article  CAS  Google Scholar 

  23. Sampath J, Sun D, Kidd VJ, Grenet J, Gandhi A, Shapiro LH et al. Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J Biol Chem 2001; 276: 39359–39367.

    Article  CAS  Google Scholar 

  24. Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 2004; 119: 861–872.

    Article  CAS  Google Scholar 

  25. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 2004; 119: 847–860.

    Article  CAS  Google Scholar 

  26. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005; 7: 469–483.

    Article  CAS  Google Scholar 

  27. Morton JP, Timpson P, Karim SA, Ridgway RA, Athineos D, Doyle B et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA 2010; 107: 246 51.

    Article  CAS  Google Scholar 

  28. Muller PA, Trinidad AG, Timpson P, Morton JP, Zanivan S, van den Berghe PV et al. Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene 2012; 32: 1252–1265.

    Article  Google Scholar 

  29. Strano S, Fontemaggi G, Costanzo A, Rizzo MG, Monti O, Baccarini A et al. Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem 2002; 277: 18817–18826.

    Article  CAS  Google Scholar 

  30. Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 2011; 7: 285–295.

    Article  CAS  Google Scholar 

  31. Romano RA, Birkaya B, Sinha S . A functional enhancer of keratin14 is a direct transcriptional target of deltaNp63. J Invest Dermatol 2007; 127: 1175–1186.

    Article  CAS  Google Scholar 

  32. Liu K, Ling S, Lin WC . TopBP1 mediates mutant p53 gain of function through NF-Y and p63/p73. Mol Cell Biol 2011; 31: 4464–4481.

    Article  CAS  Google Scholar 

  33. Noll JE, Jeffery J, Al-Ejeh F, Kumar R, Khanna KK, Callen DF et al. Mutant p53 drives multinucleation and invasion through a process that is suppressed by ANKRD11. Oncogene 2012; 31: 2836–2848.

    Article  CAS  Google Scholar 

  34. Muller PA, Vousden KH . p53 mutations in cancer. Nat Cell Biol 2013; 15: 2–8.

    Article  CAS  Google Scholar 

  35. Papagiannakopoulos T, Shapiro A, Kosik KS . MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 2008; 68: 8164–8172.

    Article  CAS  Google Scholar 

  36. Quintavalle C, Donnarumma E, Iaboni M, Roscigno G, Garofalo M, Romano G et al. Effect of miR-21 and miR-30b/c on TRAIL-induced apoptosis in glioma cells. Oncogene (epub ahead of print 10 September 2012; doi: 10.1038/onc.2012.410).

  37. Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P, Aberdam D, Knight RA, Melino G et al. miR-203 represses 'stemness' by repressing DeltaNp63. Cell Death Differ 2008; 15: 1187 95.

    Article  CAS  Google Scholar 

  38. Melar-New M, Laimins LA . Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol 2010; 84: 5212–5221.

    Article  CAS  Google Scholar 

  39. Scheel AH, Beyer U, Agami R, Dobbelstein M . Immunofluorescence-based screening identifies germ cell associated microRNA 302 as an antagonist to p63 expression. Cell Cycle 2009; 8: 1426–1432.

    Article  CAS  Google Scholar 

  40. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M . Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988; 53: 549–554.

    Article  CAS  Google Scholar 

  41. Neuzillet C, Hammel P, Tijeras-Raballand A, Couvelard A, Raymond E . Targeting the Ras-ERK pathway in pancreatic adenocarcinoma. Cancer Metastasis Rev 2012; 32: 147–162.

    Article  Google Scholar 

  42. Collisson EA, Trejo CL, Silva JM, Gu S, Korkola JE, Heiser LM et al. A central role for RAF—>MEK—>ERK signaling in the genesis of pancreatic ductal adenocarcinoma. Cancer Discov 2012; 2: 685–693.

    Article  CAS  Google Scholar 

  43. Scarpa A, Capelli P, Mukai K, Zamboni G, Oda T, Iacono C et al. Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol 1993; 142: 1534–1543.

    CAS  Google Scholar 

  44. Buganim Y, Solomon H, Rais Y, Kistner D, Nachmany I, Brait M et al. p53 Regulates the Ras circuit to inhibit the expression of a cancer-related gene signature by various molecular pathways. Cancer Res 2010; 70: 2274–2284.

    Article  CAS  Google Scholar 

  45. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003; 4: 437–450.

    Article  CAS  Google Scholar 

  46. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 2001; 15: 3243–3248.

    Article  CAS  Google Scholar 

  47. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A . Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 2001; 29: 418–425.

    Article  CAS  Google Scholar 

  48. Su X, Paris M, Gi YJ, Tsai KY, Cho MS, Lin YL et al. TAp63 prevents premature aging by promoting adult stem cell maintenance. Cell Stem Cell 2009; 5: 64–75.

    Article  CAS  Google Scholar 

  49. Waltermann A, Kartasheva NN, Dobbelstein M . Differential regulation of p63 and p73 expression. Oncogene 2003; 22: 5686–5693.

    Article  CAS  Google Scholar 

  50. Laurikkala J, Mikkola ML, James M, Tummers M, Mills AA, Thesleff I . p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development 2006; 133: 1553–1563.

    Article  CAS  Google Scholar 

  51. Edward M, Gillan C, Micha D, Tammi RH . Tumour regulation of fibroblast hyaluronan expression: a mechanism to facilitate tumour growth and invasion. Carcinogenesis 2005; 26: 1215–1223.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the labs of KHV and OJS was funded by CRUK. Work by PAJM and KHV was sponsored by the AICR. Part of the work was funded by AIRC (#5471) (2011-IG11955), AIRC 5xmille (#9979), Telethon Grant GGPO9133, Min. Salute (RF) to GM. We thank Dr N Rath and Dr M Olsen for providing the cDNA of mouse keratinocytes and Dr M Dobbelstein for providing the p63 promoter luciferase construct.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K H Vousden or P A J Muller.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, E., Morton, J., Timpson, P. et al. Functions of TAp63 and p53 in restraining the development of metastatic cancer. Oncogene 33, 3325–3333 (2014). https://doi.org/10.1038/onc.2013.287

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.287

Keywords

This article is cited by

Search

Quick links