Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A dosage-dependent pleiotropic role of Dicer in prostate cancer growth and metastasis

Abstract

Dicer is an RNase III enzyme essential for the maturation of the majority of microRNAs. Recent studies have revealed downregulation or hemizygous loss of Dicer in many tumor models and demonstrated that suppressing Dicer activity enhances tumorigenic activities of lung and breast cancer cells, which support Dicer as a haploinsufficient tumor suppressor in these cancer models. Surprisingly, we found that knocking down Dicer expression suppresses the growth and tumorigenic capacity of human prostate cancer cell lines, but enhances migratory capacities of some prostate cancer cell lines. Dicer is upregulated in human prostate cancer specimens, but lower Dicer expression portends a shorter time to recurrence. Complete ablation of Dicer activity in a Pten null mouse model for prostate cancer significantly halts tumor growth and progression, demonstrating that microRNAs have a critical role in maintaining cancer cell fitness. In comparison, hemizygous loss of Dicer in the same model also reduces primary tumor burden, but induces a more locally invasive phenotype and causes seminal vesicle obstruction at high penetrance. Disrupting Dicer activity leads to an increase in apoptosis and senescence in these models, presumably through upregulation of P16/INK4a and P27/Kip1. Collectively, these results highlight a pleotropic role of Dicer in tumorigenesis that is not only dosage-dependent but also tissue context-dependent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ . The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA 2005; 102: 10898–10903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nakagawa A, Shi Y, Kage-Nakadai E, Mitani S, Xue D . Caspase-dependent conversion of Dicer ribonuclease into a death-promoting deoxyribonuclease. Science 2010; 328: 327–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yi R, O'Carroll D, Pasolli HA, Zhang Z, Dietrich FS, Tarakhovsky A et al. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet 2006; 38: 356–362.

    Article  CAS  PubMed  Google Scholar 

  4. Andl T, Murchison EP, Liu F, Zhang Y, Yunta-Gonzalez M, Tobias JW et al. The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr Biol 2006; 16: 1041–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes & Develop 2005; 19: 489–501.

    Article  CAS  Google Scholar 

  6. Koralov SB, Muljo SA, Galler GR, Krek A, Chakraborty T, Kanellopoulou C et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 2008; 132: 860–874.

    Article  CAS  PubMed  Google Scholar 

  7. Mudhasani R, Zhu Z, Hutvagner G, Eischen CM, Lyle S, Hall LL et al. Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells. J Cell Biol 2008; 181: 1055–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu S, Guo K, Zeng Q, Huo J, Lam KP . The RNase III enzyme Dicer is essential for germinal center B-cell formation. Blood 2012; 119: 767–776.

    Article  CAS  PubMed  Google Scholar 

  9. O'Rourke JR, Georges SA, Seay HR, Tapscott SJ, McManus MT, Goldhamer DJ et al. Essential role for Dicer during skeletal muscle development. Develop Biol 2007; 311: 359–368.

    Article  CAS  PubMed  Google Scholar 

  10. Pastorelli LM, Wells S, Fray M, Smith A, Hough T, Harfe BD et al. Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mamm Genome 2009; 20: 140–151.

    Article  PubMed  Google Scholar 

  11. Zhang L, Zhang B, Valdez JM, Wang F, Ittmann M, Xin L . Dicer ablation impairs prostate stem cell activity and causes prostate atrophy. Stem Cells 2010; 28: 1260–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  13. Jafarnejad SM, Ardekani GS, Ghaffari M, Martinka M, Li G . Sox4-mediated Dicer expression is critical for suppression of melanoma cell invasion. Oncogene 2012; 32: 2131–2139.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lin RJ, Lin YC, Chen J, Kuo HH, Chen YY, Diccianni MB et al. microRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res 2010; 70: 7841–7850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khoshnaw SM, Rakha EA, Abdel-Fatah TM, Nolan CC, Hodi Z, Macmillan DR et al. Loss of Dicer expression is associated with breast cancer progression and recurrence. Breast Cancer Res Treat 2012; 135: 403–413.

    Article  CAS  PubMed  Google Scholar 

  16. Grelier G, Voirin N, Ay AS, Cox DG, Chabaud S, Treilleux I et al. Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. Br J Cancer 2009; 101: 673–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Noh H, Hong S, Dong Z, Pan ZK, Jing Q, Huang S . Impaired microrna processing facilitates breast cancer cell invasion by upregulating urokinase-type plasminogen activator expression. Genes & Cancer 2011; 2: 140–150.

    Article  CAS  Google Scholar 

  18. Chiosea S, Jelezcova E, Chandran U, Luo J, Mantha G, Sobol RW et al. Overexpression of Dicer in precursor lesions of lung adenocarcinoma. Cancer Res 2007; 67: 2345–2350.

    Article  CAS  PubMed  Google Scholar 

  19. Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 2005; 96: 111–115.

    Article  CAS  PubMed  Google Scholar 

  20. Faggad A, Budczies J, Tchernitsa O, Darb-Esfahani S, Sehouli J, Muller BM et al. Prognostic significance of Dicer expression in ovarian cancer-link to global microRNA changes and oestrogen receptor expression. J Pathol 2010; 220: 382–391.

    CAS  PubMed  Google Scholar 

  21. Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 2008; 359: 2641–2650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes & Develop 2009; 23: 2700–2704.

    Article  CAS  Google Scholar 

  23. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T . Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39: 673–677.

    Article  CAS  PubMed  Google Scholar 

  24. Lambertz I, Nittner D, Mestdagh P, Denecker G, Vandesompele J, Dyer MA et al. Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo. Cell Death Differ 2010; 17: 633–641.

    Article  CAS  PubMed  Google Scholar 

  25. Arrate MP, Vincent T, Odvody J, Kar R, Jones SN, Eischen CM . MicroRNA biogenesis is required for Myc-induced B-cell lymphoma development and survival. Cancer Res 2010; 70: 6083–6092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ozen M, Creighton CJ, Ozdemir M, Ittmann M . Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 2008; 27: 1788–1793.

    Article  CAS  PubMed  Google Scholar 

  28. Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 2008; 68: 6162–6170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chiosea S, Jelezcova E, Chandran U, Acquafondata M, McHale T, Sobol RW et al. Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. Am J Pathol 2006; 169: 1812–1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nittner D, Lambertz I, Clermont F, Mestdagh P, Kohler C, Nielsen SJ et al. Synthetic lethality between Rb, p53 and Dicer or miR-17-92 in retinal progenitors suppresses retinoblastoma formation. Nat Cell Biol 2012; 14: 958–965.

    Article  CAS  PubMed  Google Scholar 

  31. Ravi A, Gurtan AM, Kumar MS, Bhutkar A, Chin C, Lu V et al. Proliferation and tumorigenesis of a murine sarcoma cell line in the absence of DICER1. Cancer Cell 2012; 21: 848–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jin C, McKeehan K, Wang F . Transgenic mouse with high Cre recombinase activity in all prostate lobes, seminal vesicle, and ductus deferens. Prostate 2003; 57: 160–164.

    Article  CAS  PubMed  Google Scholar 

  34. Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 2003; 4: 209–221.

    Article  CAS  PubMed  Google Scholar 

  35. Park JH, Walls JE, Galvez JJ, Kim M, Abate-Shen C, Shen MM et al. Prostatic intraepithelial neoplasia in genetically engineered mice. Am J Pathol 2002; 161: 727–735.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005; 436: 725–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alimonti A, Nardella C, Chen Z, Clohessy JG, Carracedo A, Trotman LC et al. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Invest 2010; 120: 681–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tang KF, Ren H, Cao J, Zeng GL, Xie J, Chen M et al. Decreased Dicer expression elicits DNA damage and up-regulation of MICA and MICB. J Cell Biol 2008; 182: 233–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S et al. A role for small RNAs in DNA double-strand break repair. Cell 2012; 149: 101–112.

    Article  CAS  PubMed  Google Scholar 

  40. Francia S, Michelini F, Saxena A, Tang D, de Hoon M, Anelli V et al. Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 2012; 488: 231–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma Z, Swede H, Cassarino D, Fleming E, Fire A, Dadras SS . Up-regulated Dicer expression in patients with cutaneous melanoma. PLoS One 2011; 6: e20494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim J, Coffey DM, Creighton CJ, Yu Z, Hawkins SM, Matzuk MM . High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proc Natl Acad Sci USA 2012; 109: 3921–3926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ting AH, Suzuki H, Cope L, Schuebel KE, Lee BH, Toyota M et al. A requirement for DICER to maintain full promoter CpG island hypermethylation in human cancer cells. Cancer Res 2008; 68: 2570–2575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu JY, Reynolds SH, Hatfield SD, Shcherbata HR, Fischer KA, Ward EJ et al. Dicer-1-dependent Dacapo suppression acts downstream of Insulin receptor in regulating cell division of Drosophila germline stem cells. Development 2009; 136: 1497–1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Majumder PK, Grisanzio C, O'Connell F, Barry M, Brito JM, Xu Q et al. A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell 2008; 14: 146–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han L, Zhang A, Zhou X, Xu P, Wang GX, Pu PY et al. Downregulation of Dicer enhances tumor cell proliferation and invasion. Int J Oncol 2010; 37: 299–305.

    CAS  PubMed  Google Scholar 

  47. Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S et al. A MicroRNA targeting dicer for metastasis control. Cell 2010; 141: 1195–1207.

    Article  CAS  PubMed  Google Scholar 

  48. Narayanan R, Jiang J, Gusev Y, Jones A, Kearbey JD, Miller DD et al. MicroRNAs are mediators of androgen action in prostate and muscle. PLoS One 2010; 5: e13637.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sun Y, Wang BE, Leong KG, Yue P, Li L, Jhunjhunwala S et al. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res 2012; 72: 527–536.

    Article  CAS  PubMed  Google Scholar 

  50. Xin L, Ide H, Kim Y, Dubey P, Witte ON . In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc Natl Acad Sci USA 2003; 100 (Suppl 1): 11896–11903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shlush LI, Itzkovitz S, Cohen A, Rutenberg A, Berkovitz R, Yehezkel S et al. Quantitative digital in situ senescence-associated beta-galactosidase assay. BMC Cell Biol 2011; 12: 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs Lawrence Donehower and Jeffrey Rosen for critical comments, Dr Xiongbin Lu for sharing reagents. This work is supported by NIH R00 CA125937 (LX), Cancer Prevention Research Institute of Texas RP110005 (LX), NIH U01 CA141497 (MMI), and NIH P30 CA125123 (PI: Kent Osborne). This study was supported by National Cancer Institute, Cancer Prevention and Research Institute of Texas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Xin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Chen, H., Zhang, L. et al. A dosage-dependent pleiotropic role of Dicer in prostate cancer growth and metastasis. Oncogene 33, 3099–3108 (2014). https://doi.org/10.1038/onc.2013.281

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.281

Keywords

This article is cited by

Search

Quick links