Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytoplasmic interaction of the tumour suppressor protein hSNF5 with dynamin-2 controls endocytosis

Abstract

Human SNF5 (hSNF5; INI1, SMARCB1 or BAF47) is a component of the human SWI/SNF chromatin remodelling complex and a tumour suppressor mutated in rhabdoid tumours. It also associates with the integrase of the human immunodeficiency virus (HIV)-1. We show by fluorescence loss in photobleaching that hSNF5 is constantly shuttling between the nucleus and the cytoplasm, raising the question of what the role of hSNF5 is in the cytoplasm. Here, we demonstrate that hSNF5 directly interacts with the GTPase dynamin-2 (DNM2) in the cytoplasm. DNM2 is a large GTPase involved in endocytosis and vesicle dynamics, which has been related to HIV-1 internalization. We show that hSNF5 colocalizes with DNM2 in endocytic vesicles. Depletion of hSNF5, but not of other components of the SWI/SNF complex, destabilizes DNM2 and impairs DNM2-dependent endocytosis. Furthermore, we show that hSNF5 inhibits assembly-stimulated DNM2 GTPase activity but not basal GTPase activity in vitro. Altogether, these results indicate that hSNF5 affects both the stability and the activity of DNM2, uncovering an unexpected role of hSNF5 in modulating endocytosis, and open new perspectives in understanding the role of hSNF5 in tumour genesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hargreaves DC, Crabtree GR . ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 2011; 21: 396–420.

    Article  CAS  Google Scholar 

  2. Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 1998; 394: 203–206.

    Article  CAS  Google Scholar 

  3. Roberts CW, Biegel JA . The role of SMARCB1/INI1 in development of rhabdoid tumor. Cancer Biol Ther 2009; 8: 412–416.

    Article  CAS  Google Scholar 

  4. Wilson BG, Roberts CW . SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 2011; 11: 481–492.

    Article  CAS  Google Scholar 

  5. Guidi CJ, Sands AT, Zambrowicz BP, Turner TK, Demers DA, Webster W et al. Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol Cell Biol 2001; 21: 3598–3603.

    Article  CAS  Google Scholar 

  6. Klochendler-Yeivin A, Fiette L, Barra J, Muchardt C, Babinet C, Yaniv M . The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep 2000; 1: 500–506.

    Article  CAS  Google Scholar 

  7. Roberts CW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH . Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci USA 2000; 97: 13796–13800.

    Article  CAS  Google Scholar 

  8. Stojanova A, Penn LZ . The role of INI1/hSNF5 in gene regulation and cancer. Biochem Cell Biol 2009; 87: 163–177.

    Article  CAS  Google Scholar 

  9. kalpana GV, Marmon S, Wang W, Crabtree G, Goff SP . Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science 1994; 266: 2002–2006.

    Article  CAS  Google Scholar 

  10. Turelli P, Doucas V, Craig E, Mangeat B, Klages N, Evans R et al. Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication. Mol Cell 2001; 7: 1245–1254.

    Article  CAS  Google Scholar 

  11. Craig E, Zhang ZK, Davies KP, Kalpana GV . A masked NES in INI1/hSNF5 mediates hCRM1-dependent nuclear export: implications for tumorigenesis. Embo J 2002; 21: 31–42.

    Article  CAS  Google Scholar 

  12. Ferguson SM, De Camilli P . Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 2012; 13: 75–88.

    Article  CAS  Google Scholar 

  13. Koster M, Frahm T, Hauser H . Nucleocytoplasmic shuttling revealed by FRAP and FLIP technologies. Curr Opin Biotechnol 2005; 16: 28–34.

    Article  Google Scholar 

  14. Treich I, Carlson M . Interaction of a Swi3 homolog with Sth1 provides evidence for a Swi/Snf- related complex with an essential function in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17: 1768–1775.

    Article  CAS  Google Scholar 

  15. Formstecher E, Aresta S, Collura V, Hamburger A, Meil A, Trehin A . Protein interaction mapping: a Drosophila case study. Genome Res 2005; 15: 376–384.

    Article  CAS  Google Scholar 

  16. Faelber K, Posor Y, Gao S, Held M, Roske Y, Schulze D et al. Crystal structure of nucleotide-free dynamin. Nature 2011; 477: 556–560.

    Article  CAS  Google Scholar 

  17. Ford MG, Jenni S, Nunnari J . The crystal structure of dynamin. Nature 2011; 477: 561–566.

    Article  CAS  Google Scholar 

  18. Pearse BM . Coated vesicles from human placenta carry ferritin, transferrin, and immunoglobulin G. Proc Natl Acad Sci USA 1982; 79: 451–455.

    Article  CAS  Google Scholar 

  19. McMahon HT, Boucrot E . Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2011; 12: 517–533.

    Article  CAS  Google Scholar 

  20. Cao H, Chen J, Awoniyi M, Henley JR, McNiven MA . Dynamin 2 mediates fluid-phase micropinocytosis in epithelial cells. J Cell Sci 2007; 120: 4167–4177.

    Article  CAS  Google Scholar 

  21. Tuma PL, Collins CA . Dynamin forms polymeric complexes in the presence of lipid vesicles. Characterization of chemically cross-linked dynamin molecules. J Biol Chem 1995; 270: 26707–26714.

    Article  CAS  Google Scholar 

  22. Hinshaw JE, Schmid SL . Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 1995; 374: 190–192.

    Article  CAS  Google Scholar 

  23. Muhlberg AB, Warnock DE, Schmid SL . Domain structure and intramolecular regulation of dynamin GTPase. Embo J 1997; 16: 6676–6683.

    Article  CAS  Google Scholar 

  24. Warnock DE, Hinshaw JE, Schmid SL . Dynamin self-assembly stimulates its GTPase activity. J Biol Chem 1996; 271: 22310–22314.

    Article  CAS  Google Scholar 

  25. Das S, Cano J, Kalpana GV . Multimerization and DNA binding properties of INI1/hSNF5 and its functional significance. J Biol Chem 2009; 284: 19903–19914.

    Article  CAS  Google Scholar 

  26. Narayanan R, Leonard M, Song BD, Schmid SL, Ramaswami M . An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function. J Cell Biol 2005; 169: 117–126.

    Article  CAS  Google Scholar 

  27. Sever S, Muhlberg AB, Schmid SL . Impairment of dynamin’s GAP domain stimulates receptor-mediated endocytosis. Nature 1999; 398: 481–486.

    Article  CAS  Google Scholar 

  28. Soulet F, Yarar D, Leonard M, Schmid SL . SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis. Mol Biol Cell 2005; 16: 2058–2067.

    Article  CAS  Google Scholar 

  29. Newmyer SL, Christensen A, Sever S . Auxilin-dynamin interactions link the uncoating ATPase chaperone machinery with vesicle formation. Dev Cell 2003; 4: 929–940.

    Article  CAS  Google Scholar 

  30. Owen DJ, Wigge P, Vallis Y, Moore JD, Evans PR, McMahon HT . Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. Embo J 1998; 17: 5273–5285.

    Article  CAS  Google Scholar 

  31. Pant S, Sharma M, Patel K, Caplan S, Carr CM, Grant BD . AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat Cell Biol 2009; 11: 1399–1410.

    Article  CAS  Google Scholar 

  32. Wigge P, Vallis Y, McMahon HT . Inhibition of receptor-mediated endocytosis by the amphiphysin SH3 domain. Curr Biol 1997; 7: 554–560.

    Article  CAS  Google Scholar 

  33. McKenna ES, Tamayo P, Cho YJ, Tillman EJ, Mora-Blanco EL, Sansam CG et al. Epigenetic inactivation of the tumor suppressor BIN1 drives proliferation of SNF5-deficient tumors. Cell Cycle 2012; 11: 1956–1965.

    Article  CAS  Google Scholar 

  34. Lanzetti L, Di Fiore PP . Endocytosis and cancer: an 'insider' network with dangerous liaisons. Traffic 2008; 9: 2011–2021.

    Article  CAS  Google Scholar 

  35. Giebel B, Wodarz A . Tumor suppressors: control of signaling by endocytosis. Curr Biol 2006; 16: R91–R92.

    Article  CAS  Google Scholar 

  36. Deitcher D . Shibire’s enhancer is cancer’s suppressor. Trends Neurosci 2001; 24: 625–626.

    Article  CAS  Google Scholar 

  37. Thompson HM, Skop AR, Euteneuer U, Meyer BJ, McNiven MA . The large GTPase dynamin associates with the spindle midzone and is required for cytokinesis. Curr Biol 2002; 12: 2111–2117.

    Article  CAS  Google Scholar 

  38. Liu YW, Surka MC, Schroeter T, Lukiyanchuk V, Schmid SL . Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells. Mol Biol Cell 2008; 19: 5347–5359.

    Article  CAS  Google Scholar 

  39. Joshi S, Braithwaite AW, Robinson PJ, Chircop M . Dynamin inhibitors induce caspase-mediated apoptosis following cytokinesis failure in human cancer cells and this is blocked by Bcl-2 overexpression. Mol Cancer 2011; 10: 78.

    Article  CAS  Google Scholar 

  40. Vries RG, Bezrookove V, Zuijderduijn LM, Kia SK, Houweling A, Oruetxebarria I et al. Cancer-associated mutations in chromatin remodeler hSNF5 promote chromosomal instability by compromising the mitotic checkpoint. Genes Dev 2005; 19: 665–670.

    Article  CAS  Google Scholar 

  41. Vachtenheim J, Ondrusova L, Borovansky J . SWI/SNF chromatin remodeling complex is critical for the expression of microphthalmia-associated transcription factor in melanoma cells. Biochem Biophys Res Commun 2011; 392: 454–459.

    Article  Google Scholar 

  42. Bukrinsky M . SNFing HIV transcription. Retrovirology 2006; 3: 49.

    Article  Google Scholar 

  43. Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB . HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 2009; 137: 433–444.

    Article  CAS  Google Scholar 

  44. Giudicelli F, Gilardi-Hebenstreit P, Mechta-Grigoriou F, Poquet C, Charnay P . Novel activities of Mafb underlie its dual role in hindbrain segmentation and regional specification. Dev Biol 2003; 253: 150–162.

    Article  CAS  Google Scholar 

  45. van de Wetering M, Oving I, Muncan V, Pon Fong MT, Brantjes H, van Leenen D et al. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 2003; 4: 609–615.

    Article  CAS  Google Scholar 

  46. Cereghini S, Blumenfeld M, Yaniv M . A liver-specific factor essential for albumin transcription differs between differentiated and dedifferentiated rat hepatoma cells. Genes Dev 1988; 2: 957–974.

    Article  CAS  Google Scholar 

  47. Ceballos-Chavez M, Rivero S, Garcia-Gutierrez P, Rodriguez-Paredes M, Garcia-Dominguez M, Bhattacharya S et al. Control of neuronal differentiation by sumoylation of BRAF35, a subunit of the LSD1-CoREST histone demethylase complex. Proc Natl Acad Sci USA 2012; 109: 8085–8090.

    Article  CAS  Google Scholar 

  48. Dundr M, Misteli T . Measuring dynamics of nuclear proteins by photobleaching. Curr Protoc Cell Biol 2003; Chapter 13: Unit 13.5.

  49. Snapp EL, Altan N, Lippincott-Schwartz J . Measuring protein mobility by photobleaching GFP chimeras in living cells. Curr Protoc Cell Biol 2003; Chapter 21: Unit 21.1.

  50. Goodwin JS, Kenworthy AK . Photobleaching approaches to investigate diffusional mobility and trafficking of Ras in living cells. Methods 2005; 37: 154–164.

    Article  CAS  Google Scholar 

  51. Leonard M, Song BD, Ramachandran R, Schmid SL . Robust colorimetric assays for dynamin's basal and stimulated GTPase activities. Methods Enzymol 2005; 404: 490–503.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C Muchardt, M Yaniv, SL Schmid and MA McNiven for providing plasmids, and P Domínguez for microscopy technical support. This work was supported by Grants BFU2011-23442 and CSD2006-00049 from the Spanish Ministerio de Economía y Competitividad, P06-CVI-4844 from Junta de Andalucía and Fundación Ramón Areces.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M García-Domínguez or J C Reyes.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfonso‐Pérez, T., Domínguez-Sánchez, M., García-Domínguez, M. et al. Cytoplasmic interaction of the tumour suppressor protein hSNF5 with dynamin-2 controls endocytosis. Oncogene 33, 3064–3074 (2014). https://doi.org/10.1038/onc.2013.276

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.276

Keywords

This article is cited by

Search

Quick links