Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Coordinated regulation of the immunoproteasome subunits by PML/RARα and PU.1 in acute promyelocytic leukemia

Abstract

Recognition and elimination of malignant cells by cytotoxic T lymphocytes depends on antigenic peptides generated by proteasomes. It has been established that impairment of the immunoproteasome subunits, that is, PSMB8, PSMB9 and PSMB10 (PSMBs), is critical for malignant cells to escape immune recognition. We report here the regulatory mechanism of the repression of PU.1-dependent activation of PSMBs by PML/RARα in the pathogenesis of acute promyelocytic leukemia (APL) and the unidentified function of all-trans retinoic acid (ATRA) as an immunomodulator in the treatment of APL. Chromatin immunoprecipitation and luciferase reporter assays showed that PU.1 directly bound to and coordinately transactivated the promoters of PSMBs, indicating that PSMBs were transcriptional targets of PU.1 and PU.1 regulated their basal expression. Analysis of expression profiling data from a large population of acute myeloid leukemia (AML) patients revealed that the expression levels of PSMBs were significantly lower in APL patients than in non-APL AML patients. Further evidence demonstrated that the decrease in their expression was achieved through PML/RARα-mediated repression of both PU.1-dependent transactivation and PU.1 expression. Moreover, ATRA but not arsenic trioxide induced the expression of PSMBs in APL cells, indicating that ATRA treatment might activate the antigen-processing/presentation machinery. Finally, the above observations were confirmed in primary APL samples. Collectively, our data demonstrate that PML/RARα suppresses PU.1-dependent activation of the immunosubunits, which may facilitate the escape of APL cells from immune surveillance in leukemia development, and ATRA treatment is able to reactivate their expression, which would promote more efficient T-cell-mediated recognition in the treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rousselot P, Hardas B, Patel A, Guidez F, Gaken J, Castaigne S et al. The PML-RAR alpha gene product of the t(15;17) translocation inhibits retinoic acid-induced granulocytic differentiation and mediated transactivation in human myeloid cells. Oncogene 1994; 9: 545–551.

    CAS  PubMed  Google Scholar 

  2. Grignani F, Ferrucci PF, Testa U, Talamo G, Fagioli M, Alcalay M et al. The acute promyelocytic leukemia-specific PML-RAR alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 1993; 74: 423–431.

    Article  CAS  PubMed  Google Scholar 

  3. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998; 391: 815–818.

    Article  CAS  PubMed  Google Scholar 

  4. Lin RJ, Sternsdorf T, Tini M, Evans RM . Transcriptional regulation in acute promyelocytic leukemia. Oncogene 2001; 20: 7204–7215.

    Article  CAS  PubMed  Google Scholar 

  5. Hu J, Liu YF, Wu CF, Xu F, Shen ZX, Zhu YM et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA 2009; 106: 3342–3347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang ZY, Chen Z . Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 2008; 111: 2505–2515.

    Article  CAS  PubMed  Google Scholar 

  7. Zheng PZ, Wang KK, Zhang QY, Huang QH, Du YZ, Zhang QH et al. Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci USA 2005; 102: 7653–7658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doucas V, Brockes JP, Yaniv M, de The H, Dejean A . The PML-retinoic acid receptor alpha translocation converts the receptor from an inhibitor to a retinoic acid-dependent activator of transcription factor AP-1. Proc Natl Acad Sci USA 1993; 90: 9345–9349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang K, Wang P, Shi J, Zhu X, He M, Jia X et al. PML/RARalpha targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia. Cancer Cell 2010; 17: 186–197.

    Article  CAS  PubMed  Google Scholar 

  10. Tsuzuki S, Towatari M, Saito H, Enver T . Potentiation of GATA-2 activity through interactions with the promyelocytic leukemia protein (PML) and the t(15;17)-generated PML-retinoic acid receptor alpha oncoprotein. Mol Cell Biol 2000; 20: 6276–6286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jansen JH, Mahfoudi A, Rambaud S, Lavau C, Wahli W, Dejean A . Multimeric complexes of the PML-retinoic acid receptor alpha fusion protein in acute promyelocytic leukemia cells and interference with retinoid and peroxisome-proliferator signaling pathways. Proc Natl Acad Sci USA 1995; 92: 7401–7405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoemme C, Peerzada A, Behre G, Wang Y, McClelland M, Nieselt K et al. Chromatin modifications induced by PML-RARalpha repress critical targets in leukemogenesis as analyzed by ChIP–Chip. Blood 2008; 111: 2887–2895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aptsiauri N, Cabrera T, Garcia-Lora A, Lopez-Nevot MA, Ruiz-Cabello F, Garrido F . MHC class I antigens and immune surveillance in transformed cells. Int Rev Cytol 2007; 256: 139–189.

    Article  CAS  PubMed  Google Scholar 

  14. Goldberg AL, Gaczynska M, Grant E, Michalek M, Rock KL . Functions of the proteasome in antigen presentation. Cold Spring Harb Symp Quant Biol 1995; 60: 479–490.

    Article  CAS  PubMed  Google Scholar 

  15. Rock KL, Goldberg AL . Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol 1999; 17: 739–779.

    Article  CAS  PubMed  Google Scholar 

  16. Seliger B, Maeurer MJ, Ferrone S . Antigen-processing machinery breakdown and tumor growth. Immunol Today 2000; 21: 455–464.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng P, Guo Y, Niu Q, Levy DE, Dyck JA, Lu S et al. Proto-oncogene PML controls genes devoted to MHC class I antigen presentation. Nature 1998; 396: 373–376.

    Article  CAS  PubMed  Google Scholar 

  18. Promsuwicha O, Auewarakul CU . Positive and negative predictive values of HLA-DR and CD34 in the diagnosis of acute promyelocytic leukemia and other types of acute myeloid leukemia with recurrent chromosomal translocations. Asian Pac J Allergy Immunol 2009; 27: 209–216.

    CAS  PubMed  Google Scholar 

  19. Vertuani S, De Geer A, Levitsky V, Kogner P, Kiessling R, Levitskaya J . Retinoids act as multistep modulators of the major histocompatibility class I presentation pathway and sensitize neuroblastomas to cytotoxic lymphocytes. Cancer Res 2003; 63: 8006–8013.

    CAS  PubMed  Google Scholar 

  20. Padua RA, Larghero J, Robin M, le Pogam C, Schlageter MH, Muszlak S et al. PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia. Nat Med 2003; 9: 1413–1417.

    Article  CAS  PubMed  Google Scholar 

  21. Robin M, Andreu-Gallien J, Schlageter MH, Bengoufa D, Guillemot I, Pokorna K et al. Frequent antibody production against RARalpha in both APL mice and patients. Blood 2006; 108: 1972–1974.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu X, Zhang H, Qian M, Zhao X, Yang W, Wang P et al. The significance of low PU.1 expression in patients with acute promyelocytic leukemia. J Hematol Oncol 2012; 5: 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wouters BJ, Lowenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R . Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 2009; 113: 3088–3091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X, Song G et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004; 104: 3679–3687.

    Article  CAS  PubMed  Google Scholar 

  25. Tomasson MH, Xiang Z, Walgren R, Zhao Y, Kasai Y, Miner T et al. Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia. Blood 2008; 111: 4797–4808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hallermalm K, Seki K, Wei C, Castelli C, Rivoltini L, Kiessling R et al. Tumor necrosis factor-alpha induces coordinated changes in major histocompatibility class I presentation pathway, resulting in increased stability of class I complexes at the cell surface. Blood 2001; 98: 1108–1115.

    Article  CAS  PubMed  Google Scholar 

  27. Olive V, Wagner N, Chan S, Kastner P, Vannetti C, Cuzin F et al. PU.1 (Sfpi1), a pleiotropic regulator expressed from the first embryonic stages with a crucial function in germinal progenitors. Development 2007; 134: 3815–3825.

    Article  CAS  PubMed  Google Scholar 

  28. Singh H . PU.1, a shared transcriptional regulator of innate and adaptive immune cell fates. J Immunol 2008; 181: 1595–1596.

    Article  CAS  PubMed  Google Scholar 

  29. Carotta S, Wu L, Nutt SL . Surprising new roles for PU.1 in the adaptive immune response. Immunol Rev 2010; 238: 63–75.

    Article  CAS  PubMed  Google Scholar 

  30. Spain LM, Guerriero A, Kunjibettu S, Scott EW . T cell development in PU.1-deficient mice. J Immunol 1999; 163: 2681–2687.

    CAS  PubMed  Google Scholar 

  31. Lloberas J, Soler C, Celada A . The key role of PU.1/SPI-1 in B cells, myeloid cells and macrophages. Immunol Today 1999; 20: 184–189.

    Article  CAS  PubMed  Google Scholar 

  32. Carotta S, Dakic A, D’Amico A, Pang SH, Greig KT, Nutt SL et al. The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 2010; 32: 628–641.

    Article  CAS  PubMed  Google Scholar 

  33. Kanada S, Nishiyama C, Nakano N, Suzuki R, Maeda K, Hara M et al. Critical role of transcription factor PU.1 in the expression of CD80 and CD86 on dendritic cells. Blood 2011; 117: 2211–2222.

    Article  CAS  PubMed  Google Scholar 

  34. Smith-Garvin JE, Koretzky GA, Jordan MS . T cell activation. Annu Rev Immunol 2009; 27: 591–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lecchi M, Lovisone E, Genetta C, Peruccio D, Resegotti L, Richiardi P . Gamma-IFN induces a differential expression of HLA-DR, DQ and DP antigens on peripheral blood myeloid leukemic blasts at various stages of differentiation. Leuk Res 1989; 13: 221–226.

    Article  CAS  PubMed  Google Scholar 

  36. Jinnai I . In vitro growth response to G-CSF and GM-CSF by bone marrow cells of patients with acute myeloid leukemia. Leuk Res 1990; 14: 227–240.

    Article  CAS  PubMed  Google Scholar 

  37. Larsen F, Solheim J, Kristensen T, Kolsto AB, Prydz H . A tight cluster of five unrelated human genes on chromosome 16q22.1. Hum Mol Genet 1993; 2: 1589–1595.

    Article  CAS  PubMed  Google Scholar 

  38. Lowenberg B, Griffin JD, Tallman MS . Acute myeloid leukemia and acute promyelocytic leukemia. Hematol Am Soc Hematol Educ Program 2003. 82–101.

    Article  Google Scholar 

  39. Zhang Y, Zhang Z, Li J, Li L, Han X, Han L et al. Long-term efficacy and safety of arsenic trioxide for first-line treatment of elderly patients with newly diagnosed acute promyelocytic leukemia. Cancer 2013; 119: 115–125.

    Article  CAS  PubMed  Google Scholar 

  40. Shen ZX, Shi ZZ, Fang J, Gu BW, Li JM, Zhu YM et al. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA 2004; 101: 5328–5335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng X, Seshire A, Ruster B, Bug G, Beissert T, Puccetti E et al. Arsenic but not all-trans retinoic acid overcomes the aberrant stem cell capacity of PML/RARalpha-positive leukemic stem cells. Haematologica 2007; 92: 323–331.

    Article  CAS  PubMed  Google Scholar 

  42. Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72: 567–572.

    CAS  PubMed  Google Scholar 

  43. Idres N, Benoit G, Flexor MA, Lanotte M, Chabot GG . Granulocytic differentiation of human NB4 promyelocytic leukemia cells induced by all-trans retinoic acid metabolites. Cancer Res 2001; 61: 700–705.

    CAS  PubMed  Google Scholar 

  44. Maeda Y, Horiuchi F, Miyatake J, Sono H, Tatsumi Y, Urase F et al. Inhibition of growth and induction of apoptosis by all-trans retinoic acid in lymphoid cell lines transfected with the PML/RAR alpha fusion gene. Br J Haematol 1996; 93: 973–976.

    Article  CAS  PubMed  Google Scholar 

  45. Collins SJ . Retinoic acid receptors, hematopoiesis and leukemogenesis. Curr Opin Hematol 2008; 15: 346–351.

    Article  CAS  PubMed  Google Scholar 

  46. Schlenk RF, Frohling S, Hartmann F, Fischer JT, Glasmacher A, del Valle F et al. Phase III study of all-trans retinoic acid in previously untreated patients 61 years or older with acute myeloid leukemia. Leukemia 2004; 18: 1798–1803.

    Article  CAS  PubMed  Google Scholar 

  47. Hu ZB, Minden MD, McCulloch EA . Phosphorylation of BCL-2 after exposure of human leukemic cells to retinoic acid. Blood 1998; 92: 1768–1775.

    CAS  PubMed  Google Scholar 

  48. Carter BZ, Milella M, Altieri DC, Andreeff M . Cytokine-regulated expression of survivin in myeloid leukemia. Blood 2001; 97: 2784–2790.

    Article  CAS  PubMed  Google Scholar 

  49. Meijerink J, Mandigers C, van de Locht L, Tonnissen E, Goodsaid F, Raemaekers J . A novel method to compensate for different amplification efficiencies between patient DNA samples in quantitative real-time PCR. J Mol Diagn 2001; 3: 55–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nigten J, Breems-de Ridder MC, Erpelinck-Verschueren CA, Nikoloski G, van der Reijden BA, van Wageningen S et al. ID1 and ID2 are retinoic acid responsive genes and induce a G0/G1 accumulation in acute promyelocytic leukemia cells. Leukemia 2005; 19: 799–805.

    Article  CAS  PubMed  Google Scholar 

  51. Zou D, Yang X, Tan Y, Wang P, Zhu X, Yang W et al. Regulation of the hematopoietic cell kinase (HCK) by PML/RARalpha and PU.1 in acute promyelocytic leukemia. Leuk Res 2012; 36: 219–223.

    Article  CAS  PubMed  Google Scholar 

  52. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 2005; 122: 33–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by Ministry of Science and Technology Grants of China (2009CB825607, 2012AA02A211 and 2011CB910202) and National Natural Science Foundation Grants of China (31171257, 81270625 and 31100942).

Author contributions

XY performed experiments, analyzed data and wrote the manuscript; PW and JL performed experiments; HZ, WX and JX analyzed data; KW designed the research, interpreted data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K-K Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, XW., Wang, P., Liu, JQ. et al. Coordinated regulation of the immunoproteasome subunits by PML/RARα and PU.1 in acute promyelocytic leukemia. Oncogene 33, 2700–2708 (2014). https://doi.org/10.1038/onc.2013.224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.224

Keywords

This article is cited by

Search

Quick links