Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

SCFs in the new millennium

Abstract

Substrate-specific degradation is a key feature of the ubiquitin proteasome system. Substrate specificity is typically directed by the E3 or ubiquitin ligase; such specificity can be conferred either by ligase modification or expression or conversely via modification of substrates that permit their recognition by a specific E3 ligase. The most well-known example of such complexes are the Cullin-RING ligases (CRLs). CRLs are composed of one of seven cullin-family scaffold proteins; the CRL serves as a scaffold that interacts directly with a RING-domain enzyme (Rbx1/2) through an extensive protein–protein interface within the globular C-terminal domain. At the N terminus, the cullin associates with an adaptor protein through cullin-repeat motifs. This adaptor, in turn, facilitates recruitment of a substrate-specifying factor that recruits the target to be ubiquitylated. The prototypical CRL is the cul1-containing complex, commonly referred to as the Skp1-Cul1-Fbox (SCF) ligase. SCF ligases contribute to the timely destruction of numerous substrates thereby ensuring normal cell growth. The importance of SCF function is highlighted by cancer-specific alterations in either the expression or the function of select F-box substrate-specific adaptors that results in neoplastic conversion. Herein, we discuss the current understanding of SCF function and contribution to cell biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009; 137: 133–145.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Matsumoto ML, Wickliffe KE, Dong KC, Yu C, Bosanac I, Bustos D et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell 2010; 39: 477–484.

    CAS  PubMed  Google Scholar 

  3. Petroski MD, Deshaies RJ . Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 2005; 6: 9–20.

    CAS  PubMed  Google Scholar 

  4. Mikosha AS, Sutkovoi DA . [The correlative association of 17-hydroxycorticosteroid excretion and diuresis in guinea pigs]. Probl Endokrinol (Mosk) 1970; 16: 90–93.

    CAS  Google Scholar 

  5. Saha A, Deshaies RJ . Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol Cell 2008; 32: 21–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Tanaka T, Nakatani T, Kamitani T . Inhibition of NEDD8-conjugation pathway by novel molecules: potential approaches to anticancer therapy. Mol Oncol 2012; 6: 267–275.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kurz T, Ozlu N, Rudolf F, O’Rourke SM, Luke B, Hofmann K et al. The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae. Nature 2005; 435: 1257–1261.

    CAS  PubMed  Google Scholar 

  8. Huang G, Kaufman AJ, Ramanathan Y ., Singh B . SCCRO (DCUN1D1) promotes nuclear translocation and assembly of the neddylation E3 complex. J Biol Chem 2011; 286: 10297–10304.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim AY, Bommelje CC, Lee BE, Yonekawa Y, Choi L, Morris LG et al. SCCRO (DCUN1D1) is an essential component of the E3 complex for neddylation. J Biol Chem 2008; 283: 33211–33220.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lyapina S, Cope G, Shevchenko A, Serino G, Tsuge T, Zhou C et al. Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 2001; 292: 1382–1385.

    CAS  PubMed  Google Scholar 

  11. Cope GA, Suh GS, Aravind L, Schwarz SE, Zipursky SL, Koonin EV et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 2002; 298: 608–611.

    CAS  PubMed  Google Scholar 

  12. Doronkin S, Djagaeva I, Beckendorf SK . The COP9 signalosome promotes degradation of Cyclin E during early Drosophila oogenesis. Dev Cell 2003; 4: 699–710.

    CAS  PubMed  Google Scholar 

  13. Schwechheimer C, Serino G, Callis J, Crosby WL, Lyapina S, Deshaies RJ et al. Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science 2001; 292: 1379–1382.

    CAS  PubMed  Google Scholar 

  14. He Q, Cheng P, He Q, Liu Y . The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes Dev 2005; 19: 1518–1531.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fischer ES, Scrima A, Bohm K, Matsumoto S, Lingaraju GM, Faty M et al. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 2011; 147: 1024–1039.

    CAS  PubMed  Google Scholar 

  16. Emberley ED, Mosadeghi R, Deshaies RJ . Deconjugation of Nedd8 from Cul1 is directly regulated by Skp1-F-box and substrate, and the COP9 signalosome inhibits deneddylated SCF by a noncatalytic mechanism. J Biol Chem 2012; 287: 29679–29689.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Enchev RI, Scott DC, da Fonseca PC, Schreiber A, Monda JK, Schulman BA et al. Structural basis for a reciprocal regulation between SCF and CSN. Cell Rep 2012; 2: 616–627.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng J, Yang X, Harrell JM, Ryzhikov S, Shim EH, Lykke-Andersen K et al. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol Cell 2002; 10: 1519–1526.

    CAS  PubMed  Google Scholar 

  19. Liu J, Furukawa M, Matsumoto T, Xiong Y . NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol Cell 2002; 10: 1511–1518.

    CAS  PubMed  Google Scholar 

  20. Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y et al. Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 2004; 119: 517–528.

    CAS  PubMed  Google Scholar 

  21. Duda DM, Olszewski JL, Tron AE, Hammel M, Lambert LJ, Waddell MB et al. Structure of a glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface. Mol Cell 2012; 47: 371–382.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yen JL, Flick K, Papagiannis CV, Mathur R, Tyrrell A, Ouni I et al. Signal-induced disassembly of the SCF ubiquitin ligase complex by Cdc48/p97. Mol Cell 2012; 48: 288–297.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang W, Koepp DM . Fbw7 isoform interaction contributes to cyclin E proteolysis. Mol Cancer Res 2006; 4: 935–943.

    CAS  PubMed  Google Scholar 

  24. Barbash O, Zamfirova P, Lin DI, Chen X, Yang K, Nakagawa H et al. Mutations in Fbx4 inhibit dimerization of the SCF(Fbx4) ligase and contribute to cyclin D1 overexpression in human cancer. Cancer Cell 2008; 14: 68–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Barbash O, Lee EK, Diehl JA . Phosphorylation-dependent regulation of SCF(Fbx4) dimerization and activity involves a novel component, 14-3-3varepsilon. Oncogene 2011; 30: 1995–2002.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Petroski MD, Deshaies RJ . Context of multiubiquitin chain attachment influences the rate of Sic1 degradation. Mol Cell 2003; 11: 1435–1444.

    CAS  PubMed  Google Scholar 

  27. Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA . Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 2008; 134: 995–1006.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamoah K, Oashi T, Sarikas A, Gazdoiu S, Osman R, Pan ZQ . Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1’s C-terminal tail. Proc Natl Acad Sci USA 2008; 105: 12230–12235.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang X, Orlicky S, Lin Z, Willems A, Neculai D, Ceccarelli D et al. Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell 2007; 129: 1165–1176.

    CAS  PubMed  Google Scholar 

  30. Passmore LA, Booth CR, Venien-Bryan C, Ludtke SJ, Fioretto C, Johnson LN et al. Structural analysis of the anaphase-promoting complex reveals multiple active sites and insights into polyubiquitylation. Mol Cell 2005; 20: 855–866.

    CAS  PubMed  Google Scholar 

  31. Pierce NW, Kleiger G, Shan SO, Deshaies RJ . Detection of sequential polyubiquitylation on a millisecond timescale. Nature 2009; 462: 615–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Petroski MD, Deshaies RJ . Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 2005; 123: 1107–1120.

    CAS  PubMed  Google Scholar 

  33. Petroski MD, Kleiger G, Deshaies RJ . Evaluation of a diffusion-driven mechanism for substrate ubiquitination by the SCF-Cdc34 ubiquitin ligase complex. Mol Cell 2006; 24: 523–534.

    CAS  PubMed  Google Scholar 

  34. Wu K, Kovacev J, Pan ZQ . Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate. Mol Cell 2010; 37: 784–796.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Deshaies RJ, Joazeiro CA . RING domain E3 ubiquitin ligases. Annu Rev Biochem 2009; 78: 399–434.

    CAS  PubMed  Google Scholar 

  36. Yen HC, Elledge SJ . Identification of SCF ubiquitin ligase substrates by global protein stability profiling. Science 2008; 322: 923–929.

    CAS  PubMed  Google Scholar 

  37. Emanuele MJ, Elia AE, Xu Q, Thoma CR, Izhar L, Leng Y et al. Global identification of modular cullin-RING ligase substrates. Cell 2011; 147: 459–474.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K, Suzuki T et al. E3 ubiquitin ligase that recognizes sugar chains. Nature 2002; 418: 438–442.

    CAS  PubMed  Google Scholar 

  39. Spruck CH, Strohmaier H, Sangfelt O, Muller HM, Hubalek M, Muller-Holzner E et al. hCDC4 gene mutations in endometrial cancer. Cancer Res 2002; 62: 4535–4539.

    CAS  PubMed  Google Scholar 

  40. Akhoondi S, Sun D, von der Lehr N, Apostolidou S, Klotz K, Maljukova A et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res 2007; 67: 9006–9012.

    CAS  PubMed  Google Scholar 

  41. Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 2001; 294: 173–177.

    CAS  PubMed  Google Scholar 

  42. Hao B, Oehlmann S, Sowa ME, Harper JW, Pavletich NP . Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell 2007; 26: 131–143.

    CAS  PubMed  Google Scholar 

  43. van Drogen F, Sangfelt O, Malyukova A, Matskova L, Yeh E, Means AR et al. Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. Mol Cell 2006; 23: 37–48.

    CAS  PubMed  Google Scholar 

  44. Min SH, Lau AW, Lee TH, Inuzuka H, Wei S, Huang P et al. Negative regulation of the stability and tumor suppressor function of Fbw7 by the Pin1 prolyl isomerase. Mol Cell 2012; 46: 771–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mao JH, Perez-Losada J, Wu D, Delrosario R, Tsunematsu R, Nakayama KI et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 2004; 432: 775–779.

    CAS  PubMed  Google Scholar 

  46. Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, Vogelstein B et al. Inactivation of hCDC4 can cause chromosomal instability. Nature 2004; 428: 77–81.

    Article  CAS  PubMed  Google Scholar 

  47. Ekholm-Reed S, Spruck CH, Sangfelt O, van Drogen F, Mueller-Holzner E, Widschwendter M et al. Mutation of hCDC4 leads to cell cycle deregulation of cyclin E in cancer. Cancer Res 2004; 64: 795–800.

    PubMed  Google Scholar 

  48. Minella AC, Loeb KR, Knecht A, Welcker M, Varnum-Finney BJ, Bernstein ID et al. Cyclin E phosphorylation regulates cell proliferation in hematopoietic and epithelial lineages in vivo. Genes Dev 2008; 22: 1677–1689.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 2004; 23: 2116–2125.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 2004; 101: 9085–9090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R et al. The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol 2007; 9: 765–774.

    CAS  PubMed  Google Scholar 

  52. Otto T, Horn S, Brockmann M, Eilers U, Schuttrumpf L, Popov N et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell 2009; 15: 67–78.

    CAS  PubMed  Google Scholar 

  53. Popov N, Schulein C, Jaenicke LA, Eilers M . Ubiquitylation of the amino terminus of Myc by SCF(beta-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nat Cell Biol 2010; 12: 973–981.

    CAS  PubMed  Google Scholar 

  54. Oberg C, Li J, Pauley A, Wolf E, Gurney M, Lendahl U . The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J Biol Chem 2001; 276: 35847–35853.

    CAS  PubMed  Google Scholar 

  55. Malyukova A, Dohda T, von der Lehr N, Akhoondi S, Corcoran M, Heyman M et al. The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. Cancer Res 2007; 67: 5611–5616.

    CAS  PubMed  Google Scholar 

  56. Matsuoka S, Oike Y, Onoyama I, Iwama A, Arai F, Takubo K et al. Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev 2008; 22: 986–991.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS et al. SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 2011; 471: 104–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W, Anderson DJ et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 2011; 471: 110–114.

    CAS  PubMed  Google Scholar 

  59. Nateri AS, Riera-Sans L, Da Costa C, Behrens A . The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science 2004; 303: 1374–1378.

    CAS  PubMed  Google Scholar 

  60. Busino L, Millman SE, Scotto L, Kyratsous CA, Basrur V, O’Connor O et al. Fbxw7alpha- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nat Cell Biol 2012; 14: 375–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao D, Zheng HQ, Zhou Z, Chen C . The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation. Cancer Res 2010; 70: 4728–4738.

    CAS  PubMed  Google Scholar 

  62. Olson BL, Hock MB, Ekholm-Reed S, Wohlschlegel JA, Dev KK, Kralli A et al. SCFCdc4 acts antagonistically to the PGC-1alpha transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis. Genes Dev 2008; 22: 252–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sundqvist A, Bengoechea-Alonso MT, Ye X, Lukiyanchuk V, Jin J, Harper JW et al. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab 2005; 1: 379–391.

    CAS  PubMed  Google Scholar 

  64. Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, Pavletich NP . Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 2003; 11: 1445–1456.

    CAS  PubMed  Google Scholar 

  65. Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M et al. Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell 2003; 4: 799–812.

    CAS  PubMed  Google Scholar 

  66. Kanarek N, Horwitz E, Mayan I, Leshets M, Cojocaru G, Davis M et al. Spermatogenesis rescue in a mouse deficient for the ubiquitin ligase SCF{beta}-TrCP by single substrate depletion. Genes Dev 2010; 24: 470–477.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Inuzuka H, Tseng A, Gao D, Zhai B, Zhang Q, Shaik S et al. Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase. Cancer Cell 2010; 18: 147–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL . A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 2010; 24: 72–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gao D, Inuzuka H, Tan MK, Fukushima H, Locasale JW, Liu P et al. mTOR drives its own activation via SCF(betaTrCP)-dependent degradation of the mTOR inhibitor DEPTOR. Mol Cell 2011; 44: 290–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao Y, Xiong X, Sun Y . DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell 2011; 44: 304–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ et al. The genomic landscapes of human breast and colorectal cancers. Science 2007; 318: 1108–1113.

    CAS  PubMed  Google Scholar 

  72. Kudo Y, Guardavaccaro D, Santamaria PG, Koyama-Nasu R, Latres E, Bronson R et al. Role of F-box protein betaTrcp1 in mammary gland development and tumorigenesis. Mol Cell Biol 2004; 24: 8184–8194.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Guardavaccaro D, Frescas D, Dorrello NV, Peschiaroli A, Multani AS, Cardozo T et al. Control of chromosome stability by the beta-TrCP-REST-Mad2 axis. Nature 2008; 452: 365–369.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Westbrook TF, Hu G, Ang XL, Mulligan P, Pavlova NN, Liang A et al. SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 2008; 452: 370–374.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Elcheva I, Goswami S, Noubissi FK, Spiegelman VS . CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation. Mol Cell 2009; 35: 240–246.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Davis M, Hatzubai A, Andersen JS, Ben-Shushan E, Fisher GZ, Yaron A et al. Pseudosubstrate regulation of the SCF(beta-TrCP) ubiquitin ligase by hnRNP-U. Genes Dev 2002; 16: 439–451.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin HK, Wang G, Chen Z, Teruya-Feldstein J, Liu Y, Chan CH et al. Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat Cell Biol 2009; 11: 420–432.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M et al. The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol 2001; 3: 321–324.

    CAS  PubMed  Google Scholar 

  79. Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M . Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 2004; 428: 190–193.

    CAS  PubMed  Google Scholar 

  80. Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin WG Jr . Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 2004; 428: 194–198.

    CAS  PubMed  Google Scholar 

  81. Kossatz U, Dietrich N, Zender L, Buer J, Manns MP, Malek NP . Skp2-dependent degradation of p27kip1 is essential for cell cycle progression. Genes Dev 2004; 18: 2602–2607.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Shim EH, Johnson L, Noh HL, Kim YJ, Sun H, Zeiss C et al. Expression of the F-box protein SKP2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate. Cancer Res 2003; 63: 1583–1588.

    CAS  PubMed  Google Scholar 

  83. Hulit J, Lee RJ, Li Z, Wang C, Katiyar S, Yang J et al. p27Kip1 repression of ErbB2-induced mammary tumor growth in transgenic mice involves Skp2 and Wnt/beta-catenin signaling. Cancer Res 2006; 66: 8529–8541.

    CAS  PubMed  Google Scholar 

  84. Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 2010; 464: 374–379.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hara T, Kamura T, Nakayama K, Oshikawa K, Hatakeyama S, Nakayama K . Degradation of p27(Kip1) at the G(0)-G(1) transition mediated by a Skp2-independent ubiquitination pathway. J Biol Chem 2001; 276: 48937–48943.

    CAS  PubMed  Google Scholar 

  86. Kamura T, Hara T, Matsumoto M, Ishida N, Okumura F, Hatakeyama S et al. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat Cell Biol 2004; 6: 1229–1235.

    CAS  PubMed  Google Scholar 

  87. Tedesco D, Lukas J, Reed SI . The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes Dev 2002; 16: 2946–2957.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ji P, Jiang H, Rekhtman K, Bloom J, Ichetovkin M, Pagano M et al. An Rb-Skp2-p27 pathway mediates acute cell cycle inhibition by Rb and is retained in a partial-penetrance Rb mutant. Mol Cell 2004; 16: 47–58.

    CAS  PubMed  Google Scholar 

  89. Westbrook L, Manuvakhova M, Kern FG, Estes NR 2nd, Ramanathan HN, Thottassery JV . Cks1 regulates cdk1 expression: a novel role during mitotic entry in breast cancer cells. Cancer Res 2007; 67: 11393–11401.

    CAS  PubMed  Google Scholar 

  90. Liu H, Cheng EH, Hsieh JJ . Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev 2007; 21: 2385–2398.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hiramatsu Y, Kitagawa K, Suzuki T, Uchida C, Hattori T, Kikuchi H et al. Degradation of Tob1 mediated by SCFSkp2-dependent ubiquitination. Cancer Res 2006; 66: 8477–8483.

    CAS  PubMed  Google Scholar 

  92. Jiang H, Chang FC, Ross AE, Lee J, Nakayama K, Nakayama K et al. Ubiquitylation of RAG-2 by Skp2-SCF links destruction of the V(D)J recombinase to the cell cycle. Mol Cell 2005; 18: 699–709.

    CAS  PubMed  Google Scholar 

  93. Mendez J, Zou-Yang XH, Kim SY, Hidaka M, Tansey WP, Stillman B . Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol Cell 2002; 9: 481–491.

    CAS  PubMed  Google Scholar 

  94. den Engelsman J, Keijsers V, de Jong WW, Boelens WC . The small heat-shock protein alpha B-crystallin promotes FBX4-dependent ubiquitination. J Biol Chem 2003; 278: 4699–4704.

    CAS  PubMed  Google Scholar 

  95. Lin DI, Barbash O, Kumar KG, Weber JD, Harper JW, Klein-Szanto AJ et al. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Mol Cell 2006; 24: 355–366.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee TH, Perrem K, Harper JW, Lu KP, Zhou XZ . The F-box protein FBX4 targets PIN2/TRF1 for ubiquitin-mediated degradation and regulates telomere maintenance. J Biol Chem 2006; 281: 759–768.

    CAS  PubMed  Google Scholar 

  97. Hu R, Aplin AE . AlphaB-crystallin is mutant B-RAF regulated and contributes to cyclin D1 turnover in melanocytic cells. Pigment Cell Melanoma Res 2010; 23: 201–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Benzeno S, Lu F, Guo M, Barbash O, Zhang F, Herman JG et al. Identification of mutations that disrupt phosphorylation-dependent nuclear export of cyclin D1. Oncogene 2006; 25: 6291–6303.

    CAS  PubMed  Google Scholar 

  99. Zhou XZ, Perrem K, Lu KP . Role of Pin2/TRF1 in telomere maintenance and cell cycle control. J Cell Biochem 2003; 89: 19–37.

    CAS  PubMed  Google Scholar 

  100. Nakamura M, Zhou XZ, Kishi S, Lu KP . Involvement of the telomeric protein Pin2/TRF1 in the regulation of the mitotic spindle. FEBS Lett 2002; 514: 193–198.

    CAS  PubMed  Google Scholar 

  101. Beier F, Foronda M, Martinez P, Blasco MA . Conditional TRF1 knockout in the hematopoietic compartment leads to bone marrow failure and recapitulates clinical features of dyskeratosis congenita. Blood 2012; 120: 2990–3000.

    CAS  PubMed  Google Scholar 

  102. Vaites LP, Lee EK, Lian Z, Barbash O, Roy D, Wasik M et al. The Fbx4 tumor suppressor regulates cyclin D1 accumulation and prevents neoplastic transformation. Mol Cell Biol 2011; 31: 4513–4523.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gladden AB, Woolery R, Aggarwal P, Wasik MA, Diehl JA . Expression of constitutively nuclear cyclin D1 in murine lymphocytes induces B-cell lymphoma. Oncogene 2006; 25: 998–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by CA133154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Diehl.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, E., Diehl, J. SCFs in the new millennium. Oncogene 33, 2011–2018 (2014). https://doi.org/10.1038/onc.2013.144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.144

Keywords

This article is cited by

Search

Quick links