Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enteropathogenic Escherichia coli-induced macrophage inhibitory cytokine 1 mediates cancer cell survival: an in vitro implication of infection-linked tumor dissemination

Abstract

Mucosally adherent Escherichia coli is frequently observed in intestinal surface of patients with colorectal cancer, but rarely in healthy control. Particularly, enteropathogenic Escherichia coli (EPEC) is known to be closely associated with colorectal carcinogenesis in human. In this study, one consequence of EPEC infection in human intestinal cancer cells was induction of macrophage inhibitory cytokine 1 (MIC-1), which is a multifunctional cytokine with biological activities involved in cancer cell growth, differentiation and migration. The present investigation assessed the involvement of MIC-1 protein in EPEC infection-mediated cancer cell survival. The challenge with EPEC induced cancer cell detachment via cytoskeleton rearrangement, which was positively associated with induced MIC-1 expression. Moreover, MIC-1 also mediated RhoA GTPase-linked survival of the detached cancer cells. Blocking of MIC-1 or RhoA activity increased cellular apoptosis of the detached cancer cells. In terms of signaling pathway, MIC-1 triggered transforming growth factorβ-activated kinase 1 (TAK1), which enhanced expression of RhoA GTPase. We conclude that EPEC enhances MIC-1 gene expression in the human intestinal cancer cells, which can be associated with enhanced tumor cell resistance to anchorage-dependent tumor cell death via enhanced TAK1 and RhoA GTPase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Thompson PA, Gerner EW . Current concepts in colorectal cancer prevention. Expert Rev Gastroenterol Hepatol 2009; 3: 369–382.

    Article  PubMed Central  Google Scholar 

  2. Potter JD, Slattery ML, Bostick RM, Gapstur SM . Colon cancer: a review of the epidemiology. Epidemiol Rev 1993; 15: 499–545.

    Article  CAS  Google Scholar 

  3. Lieberman D . Colon cancer screening and surveillance controversies. Curr Opin Gastroenterol 2009; 25: 422–427.

    Article  Google Scholar 

  4. Triantafillidis JK, Nasioulas G, Kosmidis PA . Colorectal cancer and inflammatory bowel disease: epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Res 2009; 29: 2727–2737.

    PubMed  Google Scholar 

  5. Mager DL . Bacteria and cancer: cause, coincidence or cure? A review. J Transl Med 2006; 4: 14.

    Article  CAS  PubMed Central  Google Scholar 

  6. Rogers AB, Houghton J . Helicobacter-based mouse models of digestive system carcinogenesis. Methods Mol Biol 2009; 511: 267–295.

    Article  CAS  Google Scholar 

  7. Rogers AB, Fox JG . Inflammation and cancer. I. Rodent models of infectious gastrointestinal and liver cancer. Am J Physiol Gastrointest Liver Physiol 2004; 286: G361–G366.

    Article  CAS  Google Scholar 

  8. Swidsinski A, Khilkin M, Kerjaschki D, Schreiber S, Ortner M, Weber J et al. Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology 1998; 115: 281–286.

    Article  CAS  Google Scholar 

  9. Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R et al. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 2004; 127: 80–93.

    Article  CAS  Google Scholar 

  10. Stypulkowska-Misiurewicz H, Truchanowicz-Jarmolowicz Z, Noworyta J . Role of pathogenic strains of Escherichia coli (EPEC and ETEC) in the etiology of infantile diarrhea. Przegl Epidemiol 1984; 38: 19–27.

    CAS  PubMed  Google Scholar 

  11. Oliva CA, Scaletsky I, de Morais MB, Fagundes Neto U . Severe acute diarrhea associated to classic enteropathogenic Escherichia coli (EPEC): clinical features and fecal losses in hospitalized infants. Rev Assoc Med Bras 1997; 43: 283–289.

    Article  CAS  Google Scholar 

  12. Rothbaum R, McAdams AJ, Giannella R, Partin JC . A clinicopathologic study of enterocyte-adherent Escherichia coli: a cause of protracted diarrhea in infants. Gastroenterology 1982; 83: 441–454.

    CAS  PubMed  Google Scholar 

  13. Ulshen MH, Rollo JL . Pathogenesis of escherichia coli gastroenteritis in man—another mechanism. N Engl J Med 1980; 302: 99–101.

    Article  CAS  Google Scholar 

  14. Dean P, Maresca M, Schuller S, Phillips AD, Kenny B . Potent diarrheagenic mechanism mediated by the cooperative action of three enteropathogenic Escherichia coli-injected effector proteins. Proc Natl Acad Sci USA 2006; 103: 1876–1881.

    Article  CAS  Google Scholar 

  15. Batchelor M, Guignot J, Patel A, Cummings N, Cleary J, Knutton S et al. Involvement of the intermediate filament protein cytokeratin-18 in actin pedestal formation during EPEC infection. EMBO Rep 2004; 5: 104–110.

    Article  CAS  Google Scholar 

  16. Campellone KG, Leong JM . Tails of two Tirs: actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E. coli O157:H7. Curr Opin Microbiol 2003; 6: 82–90.

    Article  CAS  Google Scholar 

  17. Matsuzawa T, Kuwae A, Yoshida S, Sasakawa C, Abe A . Enteropathogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF-H1. EMBO J 2004; 23: 3570–3582.

    Article  CAS  PubMed Central  Google Scholar 

  18. Tomson FL, Viswanathan VK, Kanack KJ, Kanteti RP, Straub KV, Menet M et al. Enteropathogenic Escherichia coli EspG disrupts microtubules and in conjunction with Orf3 enhances perturbation of the tight junction barrier. Mol Microbiol 2005; 56: 447–464.

    Article  CAS  Google Scholar 

  19. Viswanathan VK, Lukic S, Koutsouris A, Miao R, Muza MM, Hecht G . Cytokeratin 18 interacts with the enteropathogenic Escherichia coli secreted protein F (EspF) and is redistributed after infection. Cell Microbiol 2004; 6: 987–997.

    Article  CAS  Google Scholar 

  20. Hecht G . Microbes and microbial toxins: paradigms for microbial–mucosal interactions. VII. Enteropathogenic Escherichia coli: physiological alterations from an extracellular position. Am J Physiol Gastrointest Liver Physiol 2001; 281: G1–G7.

    Article  CAS  Google Scholar 

  21. Crane JK, Majumdar S, Pickhardt DF . Host cell death due to enteropathogenic Escherichia coli has features of apoptosis. Infect Immun 1999; 67: 2575–2584.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Borthakur A, Gill RK, Hodges K, Ramaswamy K, Hecht G, Dudeja PK . Enteropathogenic Escherichia coli inhibits butyrate uptake in Caco-2 cells by altering the apical membrane MCT1 level. Am J Physiol Gastrointest Liver Physiol 2006; 290: G30–G35.

    Article  CAS  Google Scholar 

  23. Newman JV, Kosaka T, Sheppard BJ, Fox JG, Schauer DB . Bacterial infection promotes colon tumorigenesis in Apc(Min/+) mice. J Infect Dis 2001; 184: 227–230.

    Article  CAS  Google Scholar 

  24. Barthold SW, Jonas AM . Morphogenesis of early 1, 2-dimethylhydrazine-induced lesions and latent period reduction of colon carcinogenesis in mice by a variant of Citrobacter freundii. Cancer Res 1977; 37: 4352–4360.

    CAS  PubMed  Google Scholar 

  25. Maddocks OD, Short AJ, Donnenberg MS, Bader S, Harrison DJ . Attaching and effacing Escherichia coli downregulate DNA mismatch repair protein in vitro and are associated with colorectal adenocarcinomas in humans. PLoS One 2009; 4: e5517.

    Article  PubMed Central  Google Scholar 

  26. Fairlie WD, Moore AG, Bauskin AR, Russell PK, Zhang HP, Breit SN . MIC-1 is a novel TGF-beta superfamily cytokine associated with macrophage activation. J Leukoc Biol 1999; 65: 2–5.

    Article  CAS  Google Scholar 

  27. Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci USA 1997; 94: 11514–11519.

    Article  CAS  PubMed Central  Google Scholar 

  28. Kim KS, Baek SJ, Flake GP, Loftin CD, Calvo BF, Eling TE . Expression and regulation of nonsteroidal anti-inflammatory drug-activated gene (NAG-1) in human and mouse tissue. Gastroenterology 2002; 122: 1388–1398.

    Article  CAS  Google Scholar 

  29. Agarwal MK, Hastak K, Jackson MW, Breit SN, Stark GR, Agarwal ML . Macrophage inhibitory cytokine 1 mediates a p53-dependent protective arrest in S phase in response to starvation for DNA precursors. Proc Natl Acad Sci USA 2006; 103: 16278–16283.

    Article  CAS  PubMed Central  Google Scholar 

  30. Liu T, Bauskin AR, Zaunders J, Brown DA, Pankhurst S, Russell PJ et al. Macrophage inhibitory cytokine 1 reduces cell adhesion and induces apoptosis in prostate cancer cells. Cancer Res 2003; 63: 5034–5040.

    CAS  Google Scholar 

  31. Lee DH, Yang Y, Lee SJ, Kim KY, Koo TH, Shin SM et al. Macrophage inhibitory cytokine-1 induces the invasiveness of gastric cancer cells by up-regulating the urokinase-type plasminogen activator system. Cancer Res 2003; 63: 4648–4655.

    CAS  Google Scholar 

  32. Brown DA, Ward RL, Buckhaults P, Liu T, Romans KE, Hawkins NJ et al. MIC-1 serum level and genotype: associations with progress and prognosis of colorectal carcinoma. Clin Cancer Res 2003; 9: 2642–2650.

    CAS  PubMed  Google Scholar 

  33. Welsh JB, Sapinoso LM, Kern SG, Brown DA, Liu T, Bauskin AR et al. Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc Natl Acad Sci USA 2003; 100: 3410–3415.

    Article  CAS  Google Scholar 

  34. Thomas R, True LD, Lange PH, Vessella RL . Placental bone morphogenetic protein (PLAB) gene expression in normal, pre-malignant and malignant human prostate: relation to tumor development and progression. Int J Cancer 2001; 93: 47–52.

    Article  CAS  Google Scholar 

  35. Yang H, Choi HJ, Park SH, Kim JS, Moon Y . Macrophage inhibitory cytokine-1 (MIC-1) and subsequent urokinase-type plasminogen activator mediate cell death responses by ribotoxic anisomycin in HCT-116 colon cancer cells. Biochem Pharmacol 2009; 78: 1205–1213.

    Article  CAS  Google Scholar 

  36. Vermeulen SJ, Nollet F, Teugels E, Philippe J, Speleman F, van Roy FM et al. Mutation of alpha-catenin results in invasiveness of human HCT-8 colon cancer cells. Ann NY Acad Sci 1997; 833: 186–189.

    Article  CAS  Google Scholar 

  37. Vermeulen SJ, Debruyne PR, Marra G, Speleman FP, Boukamp P, Jiricny J et al. hMSH6 deficiency and inactivation of the alphaE-catenin invasion-suppressor gene in HCT-8 colon cancer cells. Clin Exp Metast 1999; 17: 663–668.

    Article  CAS  Google Scholar 

  38. Lim do Y, Park JH . Induction of p53contributes to apoptosis of HCT-116 human colon cancer cells induced by the dietary compound fisetin. Am J Physiol Gastrointest Liver Physiol 2009; 296: G1060–G1068.

    Article  CAS  Google Scholar 

  39. Struckhoff AP, Rana MK, Worthylake RA . RhoA can lead the way in tumor cell invasion and metastasis. Front Biosci 2011; 16: 1915–1926.

    Article  CAS  Google Scholar 

  40. Rathinam R, Berrier A, Alahari SK . Role of Rho GTPases and their regulators in cancer progression. Front Biosci 2011; 17: 2561–2571.

    Article  Google Scholar 

  41. Aepfelbacher M, Zumbihl R, Heesemann J . Modulation of Rho GTPases and the actin cytoskeleton by YopT of Yersinia. Curr Top Microbiol Immunol 2005; 291: 167–175.

    CAS  PubMed  Google Scholar 

  42. Chan CH, Lee SW, Li CF, Wang J, Yang WL, Wu CY et al. Deciphering the transcriptional complex critical for RhoA gene expression and cancer metastasis. Nat Cell Biol 2010; 12: 457–467.

    Article  CAS  Google Scholar 

  43. Rihet S, Vielh P, Camonis J, Goud B, Chevillard S, de Gunzburg J . Mutation status of genes encoding RhoA, Rac1, and Cdc42 GTPases in a panel of invasive human colorectal and breast tumors. J Cancer Res Clin Oncol 2001; 127: 733–738.

    CAS  PubMed  Google Scholar 

  44. Moscow JA, He R, Gnarra JR, Knutsen T, Weng Y, Zhao WP et al. Examination of human tumors for rhoA mutations. Oncogene 1994; 9: 189–194.

    CAS  PubMed  Google Scholar 

  45. Faried A, Faried LS, Usman N, Kato H, Kuwano H . Clinical and prognostic significance of RhoA and RhoC gene expression in esophageal squamous cell carcinoma. Ann Surg Oncol 2007; 14: 3593–3601.

    Article  Google Scholar 

  46. Dittert DD, Kielisch C, Alldinger I, Zietz C, Meyer W, Dobrowolski F et al. Prognostic significance of immunohistochemical RhoA expression on survival in pancreatic ductal adenocarcinoma: a high-throughput analysis. Hum Pathol 2008; 39: 1002–1010.

    Article  CAS  Google Scholar 

  47. Bellizzi A, Mangia A, Chiriatti A, Petroni S, Quaranta M, Schittulli F et al. RhoA protein expression in primary breast cancers and matched lymphocytes is associated with progression of the disease. Int J Mol Med 2008; 22: 25–31.

    CAS  PubMed  Google Scholar 

  48. Tong S, Marjono B, Brown DA, Mulvey S, Breit SN, Manuelpillai U et al. Serum concentrations of macrophage inhibitory cytokine 1 (MIC 1) as a predictor of miscarriage. Lancet 2004; 363: 129–130.

    Article  CAS  Google Scholar 

  49. Brown DA, Breit SN, Buring J, Fairlie WD, Bauskin AR, Liu T et al. Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women: a nested case–control study. Lancet 2002; 359: 2159–2163.

    Article  CAS  Google Scholar 

  50. Wollmann W, Goodman ML, Bhat-Nakshatri P, Kishimoto H, Goulet RJ, Mehrotra S et al. The macrophage inhibitory cytokine integrates AKT/PKB and MAP kinase signaling pathways in breast cancer cells. Carcinogenesis 2005; 26: 900–907.

    Article  CAS  Google Scholar 

  51. Iczkowski KA, Pantazis CG . Overexpression of NSAID-activated gene product in prostate cancer. Int J Surg Pathol 2003; 11: 159–166.

    Article  CAS  Google Scholar 

  52. Lu PD, Jousse C, Marciniak SJ, Zhang Y, Novoa I, Scheuner D et al. Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. EMBO J 2004; 23: 169–179.

    Article  CAS  PubMed Central  Google Scholar 

  53. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 2003; 11: 619–633.

    Article  CAS  Google Scholar 

  54. Nougayrede JP, Foster GH, Donnenberg MS . Enteropathogenic Escherichia coli effector EspF interacts with host protein Abcf2. Cell Microbiol 2007; 9: 680–693.

    Article  CAS  Google Scholar 

  55. Nagai T, Abe A, Sasakawa C . Targeting of enteropathogenic Escherichia coli EspF to host mitochondria is essential for bacterial pathogenesis: critical role of the 16th leucine residue in EspF. J Biol Chem 2005; 280: 2998–3011.

    Article  CAS  Google Scholar 

  56. Braga V . Epithelial cell shape: cadherins and small GTPases. Exp Cell Res 2000; 261: 83–90.

    Article  CAS  Google Scholar 

  57. Mahida YR, Rolfe VE . Host–bacterial interactions in inflammatory bowel disease. Clin Sci (Lond) 2004; 107: 331–341.

    Article  CAS  Google Scholar 

  58. Gradel KO, Nielsen HL, Schonheyder HC, Ejlertsen T, Kristensen B, Nielsen H . Increased short and long term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis. Gastroenterology 2009; 137: 495–501.

    Article  Google Scholar 

  59. Mylonaki M, Rayment NB, Rampton DS, Hudspith BN, Brostoff J . Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel disease. Inflamm Bowel Dis 2005; 11: 481–487.

    Article  Google Scholar 

  60. Detrich RE . Report on a government sponsored pediatric dental program. J Maine Med Assoc 1976; 67: 52–54.

    CAS  PubMed  Google Scholar 

  61. Gotoh T, Oyadomari S, Mori K, Mori M . Nitric oxide-induced apoptosis in RAW 264.7 macrophages is mediated by endoplasmic reticulum stress pathway involving ATF6 and CHOP. J Biol Chem 2002; 277: 12343–12350.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by Ministry of Education, Science and Technology Grant 2012R1A1A2005837.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Moon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H., Kim, J., Do, K. et al. Enteropathogenic Escherichia coli-induced macrophage inhibitory cytokine 1 mediates cancer cell survival: an in vitro implication of infection-linked tumor dissemination. Oncogene 32, 4960–4969 (2013). https://doi.org/10.1038/onc.2012.508

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.508

Keywords

This article is cited by

Search

Quick links