Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PIR2/Rnf144B regulates epithelial homeostasis by mediating degradation of p21WAF1 and p63

Abstract

ΔNp63 is a transcription factor that is critical for the development of stratified epithelia and is overexpressed or amplified in >80% of squamous cell carcinomas (SCCs). We identified the RING finger E3 ubiquitin ligase PIR2/Rnf144b as a direct transcriptional target of ΔNp63α and showed that its expression parallels that of ΔNp63α in keratinocytes, SCC cell lines and SCCs. We used primary keratinocytes as a model system to investigate the function of PIR2/Rnf144b in stratified epithelia. Depletion of PIR2/Rnf144b severely impaired keratinocyte proliferation and differentiation, associated with accumulation of p21WAF1/CIP1; a known target of PIR2/Rnf144b. More importantly, we found that PIR2/Rnf144b binds and mediates proteasomal degradation of ΔNp63α, generating a hitherto unknown auto-regulatory feedback loop. These findings substantiate PIR2/Rnf144b as a potentially critical component of epithelial homeostasis, acting downstream of ΔNp63α to regulate cellular levels of p21WAF1/CIP1 and ΔNp63α.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Westra WH . The changing face of head and neck cancer in the 21st century: the impact of HPV on the epidemiology and pathology of oral cancer. Head Neck Pathol 2009; 3: 78–81.

    Article  Google Scholar 

  2. Hibi K, Trink B, Patturajan M, Westra WH, Caballero OL, Hill DE et al. AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci USA 2000; 97: 5462–5467.

    Article  CAS  Google Scholar 

  3. Sniezek JC, Matheny KE, Westfall MD, Pietenpol JA . Dominant negative p63 isoform expression in head and neck squamous cell carcinoma. Laryngoscope 2004; 114: 2063–2072.

    Article  CAS  Google Scholar 

  4. Vanbokhoven H, Melino G, Candi E, Declercq W . p63, a story of mice and men. J Invest Dermatol 2011; 131: 1196–1207.

    Article  CAS  Google Scholar 

  5. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A . p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999; 398: 708–713.

    Article  CAS  Google Scholar 

  6. Suh EK, Yang A, Kettenbach A, Bamberger C, Michaelis AH, Zhu Z et al. p63 protects the female germ line during meiotic arrest. Nature 2006; 444: 624–628.

    Article  CAS  Google Scholar 

  7. Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999; 398: 714–718.

    Article  CAS  Google Scholar 

  8. Candi E, Rufini A, Terrinoni A, Dinsdale D, Ranalli M, Paradisi A et al. Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice. Cell Death Differ 2006; 13: 1037–1047.

    Article  CAS  Google Scholar 

  9. Graziano V, De Laurenzi V . Role of p63 in cancer development. Biochim Biophys Acta 2011; 1816: 57–66.

    CAS  PubMed  Google Scholar 

  10. Deyoung MP, Ellisen LW . p63 and p73 in human cancer: defining the network. Oncogene 2007; 26: 5169–5183.

    Article  CAS  Google Scholar 

  11. Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW . p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 2006; 9: 45–56.

    Article  CAS  Google Scholar 

  12. Di Cunto F, Topley G, Calautti E, Hsiao J, Ong L, Seth PK et al. Inhibitory function of p21Cip1/WAF1 in differentiation of primary mouse keratinocytes independent of cell cycle control. Science 1998; 280: 1069–1072.

    Article  CAS  Google Scholar 

  13. Abbas T, Dutta A . p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 2009; 9: 400–414.

    Article  CAS  Google Scholar 

  14. Candi E, Schmidt R, Melino G . The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 2005; 6: 328–340.

    Article  CAS  Google Scholar 

  15. Blanpain C, Fuchs E . Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 2009; 10: 207–217.

    Article  CAS  Google Scholar 

  16. Watt FM, Lo Celso C, Silva-Vargas V . Epidermal stem cells: an update. Curr Opin Genet Dev 2006; 16: 518–524.

    Article  CAS  Google Scholar 

  17. Sayan BS, Yang AL, Conforti F, Tucci P, Piro MC, Browne GJ et al. Differential control of TAp73 and DeltaNp73 protein stability by the ring finger ubiquitin ligase PIR2. Proc Natl Acad Sci USA 2010; 107: 12877–12882.

    Article  CAS  Google Scholar 

  18. Huang J, Xu LG, Liu T, Zhai Z, Shu HB . The p53-inducible E3 ubiquitin ligase p53RFP induces p53-dependent apoptosis. FEBS Lett 2006; 580: 940–947.

    Article  CAS  Google Scholar 

  19. Ng CC, Arakawa H, Fukuda S, Kondoh H, Nakamura Y . p53RFP, a p53-inducible RING-finger protein, regulates the stability of p21WAF1. Oncogene 2003; 22: 4449–4458.

    Article  CAS  Google Scholar 

  20. Benard G, Neutzner A, Peng G, Wang C, Livak F, Youle RJ et al. IBRDC2, an IBR-type E3 ubiquitin ligase, is a regulatory factor for Bax and apoptosis activation. EMBO J 2010; 29: 1458–1471.

    Article  CAS  Google Scholar 

  21. Sayan AE, D'Angelo B, Sayan BS, Tucci P, Cimini A, Ceru MP et al. p73 and p63 regulate the expression of fibroblast growth factor receptor 3. Biochem Biophys Res Commun 2010; 394: 824–828.

    Article  CAS  Google Scholar 

  22. Nguyen BC, Lefort K, Mandinova A, Antonini D, Devgan V, Della Gatta G et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev 2006; 20: 1028–1042.

    Article  CAS  Google Scholar 

  23. Truong AB, Kretz M, Ridky TW, Kimmel R, Khavari PA . p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev 2006; 20: 3185–3197.

    Article  CAS  Google Scholar 

  24. Ciechanover A . Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 2005; 6: 79–87.

    Article  CAS  Google Scholar 

  25. Ciechanover A . Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell Death Differ 2005; 12: 1178–1190.

    Article  CAS  Google Scholar 

  26. Okuyama R, LeFort K, Dotto GP . A dynamic model of keratinocyte stem cell renewal and differentiation: role of the p21WAF1/Cip1 and Notch1 signaling pathways. J Investig Dermatol Symp Proc 2004; 9: 248–252.

    Article  CAS  Google Scholar 

  27. Cheok CF, Verma CS, Baselga J, Lane DP . Translating p53 into the clinic. Nat Rev Clin Oncol 2011; 8: 25–37.

    Article  CAS  Google Scholar 

  28. Taebunpakul P, Sayan BS, Flinterman M, Klanrit P, Gaken J, Odell EW et al. Apoptin induces apoptosis by changing the equilibrium between the stability of TAp73 and DeltaNp73 isoforms through ubiquitin ligase PIR2. Apoptosis 2012; 17: 762–776.

    Article  CAS  Google Scholar 

  29. Deshaies RJ, Joazeiro CA . RING domain E3 ubiquitin ligases. Annu Rev Biochem 2009; 78: 399–434.

    Article  CAS  Google Scholar 

  30. Joazeiro CA, Weissman AM . RING finger proteins: mediators of ubiquitin ligase activity. Cell 2000; 102: 549–552.

    Article  CAS  Google Scholar 

  31. Weinberg WC, Denning MF . P21Waf1 control of epithelial cell cycle and cell fate. Crit Rev Oral Biol Med 2002; 13: 453–464.

    Article  Google Scholar 

  32. Schavolt KL, Pietenpol JA . p53 and Delta Np63 alpha differentially bind and regulate target genes involved in cell cycle arrest, DNA repair and apoptosis. Oncogene 2007; 26: 6125–6132.

    Article  CAS  Google Scholar 

  33. Blagosklonny MV, Wu GS, Omura S, el-Deiry WS . Proteasome-dependent regulation of p21WAF1/CIP1 expression. Biochem Biophys Res Commun 1996; 227: 564–569.

    Article  CAS  Google Scholar 

  34. Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M . Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell 2003; 115: 71–82.

    Article  CAS  Google Scholar 

  35. Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A . Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem 2003; 278: 25752–25757.

    Article  CAS  Google Scholar 

  36. Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M et al. The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol 2001; 3: 321–324.

    Article  CAS  Google Scholar 

  37. Li Y, Peart MJ, Prives C . Stxbp4 regulates DeltaNp63 stability by suppression of RACK1-dependent degradation. Mol Cell Biol 2009; 29: 3953–3963.

    Article  CAS  Google Scholar 

  38. Candi E, Cipollone R, Rivetti di Val Cervo P, Gonfloni S, Melino G, Knight R . p63 in epithelial development. Cell Mol Life Sci 2008; 65: 3126–3133.

    Article  CAS  Google Scholar 

  39. Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P, Aberdam D, Knight RA, Melino G et al. miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ 2008; 15: 1187–1195.

    Article  CAS  Google Scholar 

  40. Sayan AE, Roperch JP, Sayan BS, Rossi M, Pinkoski MJ, Knight RA et al. Generation of DeltaTAp73 proteins by translation from a putative internal ribosome entry site. Ann NY Acad Sci 2007; 1095: 315–324.

    Article  CAS  Google Scholar 

  41. Ponassi R, Terrinoni A, Chikh A, Rufini A, Lena AM, Sayan BS et al. p63 and p73, members of the p53 gene family, transactivate PKCdelta. Biochem Pharmacol 2006; 72: 1417–1422.

    Article  CAS  Google Scholar 

  42. Sayan AE, Stanford R, Vickery R, Grigorenko E, Diesch J, Kulbicki K et al. Fra-1 controls motility of bladder cancer cells via transcriptional upregulation of the receptor tyrosine kinase AXL. Oncogene 2012; 31: 1493–1503.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by funding from the University of Southampton to BSS and by the Medical Research Council, UK; ‘Alleanza contro il Cancro’ (ACC12), MIUR/PRIN (RBIP06LCA9_0023), AIRC (2008-2010_33-08), Italian Human ProteomeNet RBRN07BMCT to GM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B S Sayan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conforti, F., Li Yang, A., Cristina Piro, M. et al. PIR2/Rnf144B regulates epithelial homeostasis by mediating degradation of p21WAF1 and p63. Oncogene 32, 4758–4765 (2013). https://doi.org/10.1038/onc.2012.497

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.497

Keywords

This article is cited by

Search

Quick links