Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Functional analysis and consequences of Mdm2 E3 ligase inhibition in human tumor cells

Abstract

Mdm2 is the major negative regulator of p53 tumor-suppressor activity. This oncoprotein is overexpressed in many human tumors that retain the wild-type p53 allele. As such, targeted inhibition of Mdm2 is being considered as a therapeutic anticancer strategy. The N-terminal hydrophobic pocket of Mdm2 binds to p53 and thereby inhibits the transcription of p53 target genes. Additionally, the C-terminus of Mdm2 contains a RING domain with intrinsic ubiquitin E3 ligase activity. By recruiting E2 ubiquitin-conjugating enzyme(s), Mdm2 acts as a molecular scaffold to facilitate p53 ubiquitination and proteasome-dependent degradation. Mdmx (Mdm4), an Mdm2 homolog, also has a RING domain and hetero-oligomerizes with Mdm2 to stimulate its E3 ligase activity. Recent studies have shown that C-terminal residues adjacent to the RING domain of both Mdm2 and Mdmx contribute to Mdm2 E3 ligase activity. However, the molecular mechanisms mediating this process remain unclear, and the biological consequences of inhibiting Mdm2/Mdmx co-operation or blocking Mdm2 ligase function are relatively unexplored. This study presents biochemical and cell biological data that further elucidate the mechanisms by which Mdm2 and Mdmx co-operate to regulate p53 level and activity. We use chemical and genetic approaches to demonstrate that functional inhibition of Mdm2 ubiquitin ligase activity is insufficient for p53 activation. This unexpected result suggests that concomitant treatment with Mdm2/Mdmx antagonists may be needed to achieve therapeutic benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aranda-Anzaldo A, Dent MA . Reassessing the role of p53 in cancer and ageing from an evolutionary perspective. Mech Ageing Dev 2007; 128: 293–302.

    Article  CAS  PubMed  Google Scholar 

  2. Lane D, Levine A . p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2010; 2: a000893.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Beckerman R, Prives C . Transcriptional regulation by p53. Cold Spring Harb Perspect Biol 2010; 2: a000935.

    Article  PubMed  PubMed Central  Google Scholar 

  4. He L, He X, Lowe SW, Hannon GJ . microRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nat Rev Cancer 2007; 7: 819–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wade M, Wahl GM . Targeting Mdm2 and Mdmx in cancer therapy: better living through medicinal chemistry? Mol Cancer Res 2009; 7: 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Terzian T, Wang Y, Van Pelt CS, Box NF, Travis EL, Lozano G . Haploinsufficiency of Mdm2 and Mdm4 in tumorigenesis and development. Mol Cell Biol 2007; 27: 5479–5485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maetens M, Doumont G, Clercq SD, Francoz S, Froment P, Bellefroid E et al. Distinct roles of Mdm2 and Mdm4 in red cell production. Blood 2007; 109: 2630–2633.

    Article  CAS  PubMed  Google Scholar 

  8. Marine JC, Dyer MA, Jochemsen AG . MDMX: from bench to bedside. J Cell Sci 2007; 120 (Pt 3): 371–378.

    Article  CAS  PubMed  Google Scholar 

  9. Saville MK, Sparks A, Xirodimas DP, Wardrop J, Stevenson LF, Bourdon JC et al. Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem 2004; 279: 42169.

    Article  CAS  PubMed  Google Scholar 

  10. Marine JC, Lozano G . Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ 2010; 17: 93–102.

    Article  CAS  PubMed  Google Scholar 

  11. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM . Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 2000; 275: 8945–8951.

    Article  CAS  PubMed  Google Scholar 

  12. Linares LK, Hengstermann A, Ciechanover A, Muller S, Scheffner M . HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc Natl Acad Sci USA 2003; 100: 12009–12014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y et al. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem 2001; 276: 14537–14540.

    Article  CAS  PubMed  Google Scholar 

  14. Kawai H, Wiederschain D, Kitao H, Stuart J, Tsai KK, Yuan ZM . DNA damage-induced MDMX degradation is mediated by MDM2. J Biol Chem 2003; 278: 45946–45953.

    Article  CAS  PubMed  Google Scholar 

  15. Wang YV, Leblanc M, Wade M, Jochemsen AG, Wahl GM . Increased radioresistance and accelerated B cell lymphomas in mice with Mdmx mutations that prevent modifications by DNA-damage-activated kinases. Cancer Cell 2009; 16: 33–43.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Poyurovsky MV, Priest C, Kentsis A, Borden KL, Pan ZQ, Pavletich N et al. The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. EMBO J 2007; 26: 90–101.

    Article  CAS  PubMed  Google Scholar 

  17. Uldrijan S, Pannekoek WJ, Vousden KH . An essential function of the extreme C-terminus of MDM2 can be provided by MDMX. EMBO J 2007; 26: 102–112.

    Article  CAS  PubMed  Google Scholar 

  18. Kostic M, Matt T, Martinez-Yamout MA, Dyson HJ, Wright PE . Solution structure of the Hdm2 C2H2C4 RING, a domain critical for ubiquitination of p53. J Mol Biol 2006; 363: 433–450.

    Article  CAS  PubMed  Google Scholar 

  19. Linke K, Mace PD, Smith CA, Vaux DL, Silke J, Day CL . Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ 2008; 15: 841–848.

    Article  CAS  PubMed  Google Scholar 

  20. Wang YV, Wade M, Wong E, Li YC, Rodewald LW, Wahl GM . Quantitative analyses reveal the importance of regulated Hdmx degradation for p53 activation. Proc Natl Acad Sci USA 2007; 104: 12365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. De Clercq S, Gembarska A, Denecker G, Maetens M, Naessens M, Haigh K et al. Widespread overexpression of epitope-tagged Mdm4 does not accelerate tumor formation in vivo. Mol Cell Biol 2010; 30: 5394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R et al. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 2004; 24: 5835–5843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 2006; 3: 995–1000.

    Article  PubMed  Google Scholar 

  24. Pereg Y, Shkedy D, de Graaf P, Meulmeester E, Edelson-Averbukh M, Salek M et al. Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage. Proc Natl Acad Sci USA 2005; 102: 5056–5061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang Y, Ludwig RL, Jensen JP, Pierre SA, Medaglia MV, Davydov IV et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 2005; 7: 547–559.

    Article  CAS  PubMed  Google Scholar 

  26. Weissman AM, Yang Y, Kitagaki J, Sasiela CA, Beutler JA, O’Keefe BR . Inhibiting Hdm2 and ubiquitin-activating enzyme: targeting the ubiquitin conjugating system in 311805345cancer. Ernst Schering Found Symp Proc 2008; 171–190.

  27. Joseph TL, Madhumalar A, Brown CJ, Lane DP, Verma C . Differential binding of p53 and nutlin to MDM2 and MDMX: computational studies. Cell Cycle 2010; 9: 1167–1181.

    Article  CAS  PubMed  Google Scholar 

  28. Popowicz GM, Czarna A, Holak TA . Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain. Cell Cycle 2008; 7: 2441–2443.

    Article  CAS  PubMed  Google Scholar 

  29. Wade M, Rodewald LW, Espinosa JM, Wahl GM . BH3 activation blocks Hdmx suppression of apoptosis and co-operates with Nutlin to induce cell death. Cell Cycle 2008; 7: 1973–1982.

    Article  CAS  PubMed  Google Scholar 

  30. Das R, Mariano J, Tsai YC, Kalathur RC, Kostova Z, Li J et al. Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Mol Cell 2009; 34: 674–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ozkan E, Yu H, Deisenhofer J . Mechanistic insight into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases. Proc Natl Acad Sci USA 2005; 102: 18890–18895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen L, Gilkes DM, Pan Y, Lane WS, Chen J . ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J 2005; 24: 3411–3422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meek DW, Anderson CW . Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 2009; 1: a000950.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cheng Q, Chen L, Li Z, Lane WS, Chen J . ATM activates p53 by regulating MDM2 oligomerization and E3 processivity. EMBO J 2009; 28: 3857–3867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dastidar SG, Raghunathan D, Nicholson J, Hupp TR, Lane DP, Verma CS . Chemical states of the N-terminal ‘lid’ of MDM2 regulate p53 binding: simulations reveal complexities of modulation. Cell Cycle 2011; 10: 82–89.

    Article  CAS  PubMed  Google Scholar 

  36. Zuckerman V, Lenos K, Popowicz GM, Silberman I, Grossman T, Marine JC et al. c-Abl phosphorylates Hdmx and regulates its interaction with p53. J Biol Chem 2009; 284: 4031–4039.

    Article  CAS  PubMed  Google Scholar 

  37. Gu J, Kawai H, Nie L, Kitao H, Wiederschain D, Jochemsen AG et al. Mutual dependence of MDM2 and MDMX in their functional inactivation of p53. J Biol Chem 2002; 277: 19251–19254.

    Article  CAS  PubMed  Google Scholar 

  38. Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A, Ohtsubo M . MDM2 interacts with MDMX through their RING finger domains. FEBS Lett 1999; 447: 5–9.

    Article  CAS  PubMed  Google Scholar 

  39. Itahana K, Mao H, Jin A, Itahana Y, Clegg HV, Lindstrom MS et al. Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell 2007; 12: 355–366.

    Article  CAS  PubMed  Google Scholar 

  40. Huang L, Yan Z, Liao X, Li Y, Yang J, Wang ZG et al. The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo. Proc Natl Acad Sci USA 2011; 108: 12001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pant V, Xiong S, Iwakuma T, Quintas-Cardama A, Lozano G . Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability. Proc Natl Acad Sci USA 2011; 108: 11995–12000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kitagaki J, Agama KK, Pommier Y, Yang Y, Weissman AM . Targeting tumor cells expressing p53 with a water-soluble inhibitor of Hdm2. Mol Cancer Ther 2008; 7: 2445–2454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wong ET, Kolman JL, Li YC, Mesner LD, Hillen W, Berens C et al. Reproducible doxycycline-inducible transgene expression at specific loci generated by Cre-recombinase mediated cassette exchange. Nucleic Acids Res 2005; 33: e147.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stommel JM, Wahl GM . Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J 2004; 23: 1547–1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT . SUMO-1 modification activates the transcriptional response of p53. EMBO J 1999; 18: 6455–6461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xirodimas D, Saville MK, Edling C, Lane DP, Lain S . Different effects of p14ARF on the levels of ubiquitinated p53 and Mdm2 in vivo. Oncogene 2001; 20: 4972–4983.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by a National Institutes of Health R01 Grant CA61449 and a Discovery Research Grant from sanofi-aventis awarded to GMW. We thank all members of the Wahl lab for input on various aspects of this project, Dimitris Xirodimas (Dundee University) for advice on the ubiquitylation assays and Masha Poyurovsky (Columbia University) for productive discussions. We also thank Rachel Klevit and Chris Pierini (University of Washington) for their comments and insight into ubiquitylation during this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Wade or G M Wahl.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wade, M., Li, Y., Matani, A. et al. Functional analysis and consequences of Mdm2 E3 ligase inhibition in human tumor cells. Oncogene 31, 4789–4797 (2012). https://doi.org/10.1038/onc.2011.625

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.625

Keywords

This article is cited by

Search

Quick links