Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Diversity within the pRb pathway: is there a code of conduct?

Abstract

The failure of cell proliferation to be properly regulated is a hallmark of tumourigenesis. The retinoblastoma protein (pRb) pathway represents a key component in the regulation of the cell cycle and tumour suppression. Recent findings have revealed new levels of complexity reflecting a repertoire of post-translational modifications that occur on pRb together with its key effector E2F-1. Here we provide an overview of the modifications and consider the possibility of a ‘code’ that endows pRb with the ability to function in diverse physiological settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adams PD . (2001). Regulation of the retinoblastoma tumor suppressor protein by cyclin/cdks. Biochim Biophys Acta 1471: M123–M133.

    CAS  PubMed  Google Scholar 

  • Adams PD, Li X, Sellers WR, Baker KB, Leng X, Harper JW et al. (1999). Retinoblastoma protein contains a C-terminal motif that targets it for phosphorylation by cyclin-cdk complexes. Mol Cell Biol 19: 1068–1080.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bedford MT, Clarke SG . (2009). Protein arginine methylation in mammals: who, what, and why. Mol Cell 33: 1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blattner C, Sparks A, Lane D . (1999). Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol Cell Biol 19: 3704–3713.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonasio R, Lecona E, Reinberg D . (2010). MBT domain proteins in development and disease. Semin Cell Dev Biol 21: 221–230.

    CAS  PubMed  Google Scholar 

  • Brown MA, Sims 3rd RJ, Gottlieb PD, Tucker PW . (2006). Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 5: 26.

    PubMed  PubMed Central  Google Scholar 

  • Campanero MR, Flemington EK . (1997). Regulation of E2F through ubiquitin-proteasome-dependent degradation: stabilization by the pRB tumor suppressor protein. Proc Natl Acad Sci U S A 94: 2221–2226.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carr SM, Munro S, Kessler B, Oppermann U, La Thangue NB . (2011). Interplay between lysine methylation and Cdk phosphorylation in growth control by the retinoblastoma protein. EMBO J 30: 317–327.

    CAS  PubMed  Google Scholar 

  • Chan HM, Krstic-Demonacos M, Smith L, Demonacos C, La Thangue NB . (2001a). Acetylation control of the retinoblastoma tumour-suppressor protein. Nat Cell Biol 3: 667–674.

    CAS  PubMed  Google Scholar 

  • Chan HM, Smith L, La Thangue NB . (2001b). Role of LXCXE motif-dependent interactions in the activity of the retinoblastoma protein. Oncogene 20: 6152–6163.

    CAS  PubMed  Google Scholar 

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC et al. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325: 834–840.

    CAS  PubMed  Google Scholar 

  • Clarke AR, Maandag ER, van Roon M, van der Lugt NM, van der Valk M, Hooper ML et al. (1992). Requirement for a functional Rb-1 gene in murine development. Nature 359: 328–330.

    CAS  PubMed  Google Scholar 

  • Classon M, Harlow E . (2002). The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2: 910–917.

    CAS  PubMed  Google Scholar 

  • Cobrinik D . (2005). Pocket proteins and cell cycle control. Oncogene 24: 2796–2809.

    CAS  PubMed  Google Scholar 

  • Connell-Crowley L, Harper JW, Goodrich DW . (1997). Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Mol Biol Cell 8: 287–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai C, Gu W . (2010). p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med 16: 528–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delston RB, Matatall KA, Sun Y, Onken MD, Harbour JW . (2011). p38 phosphorylates Rb on Ser567 by a novel, cell cycle-independent mechanism that triggers Rb-Hdm2 interaction and apoptosis. Oncogene 30: 588–599.

    CAS  PubMed  Google Scholar 

  • Dick FA, Dyson N . (2003). pRB contains an E2F1-specific binding domain that allows E2F1-induced apoptosis to be regulated separately from other E2F activities. Mol Cell 12: 639–649.

    CAS  PubMed  Google Scholar 

  • Dyson N . (1998). The regulation of E2F by pRB-family proteins. Genes Dev 12: 2245–2262.

    CAS  PubMed  Google Scholar 

  • Fagan R, Flint KJ, Jones N . (1994). Phosphorylation of E2F-1 modulates its interaction with the retinoblastoma gene product and the adenoviral E4 19 kDa protein. Cell 78: 799–811.

    CAS  PubMed  Google Scholar 

  • Fang Y, Nicholl MB . (2011). Sirtuin 1 in malignant transformation: friend or foe? Cancer Lett 306: 10–14.

    CAS  PubMed  Google Scholar 

  • Fischle W, Wang Y, Allis CD . (2003). Binary switches and modification cassettes in histone biology and beyond. Nature 425: 475–479.

    CAS  PubMed  Google Scholar 

  • Gonzalo S, Garcia-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE et al. (2005). Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 7: 420–428.

    CAS  PubMed  Google Scholar 

  • Gorges LL, Lents NH, Baldassare JJ . (2008). The extreme COOH terminus of the retinoblastoma tumor suppressor protein pRb is required for phosphorylation on Thr-373 and activation of E2F. Am J Physiol Cell Physiol 295: C1151–C1160.

    CAS  PubMed  Google Scholar 

  • Gu W, Schneider JW, Condorelli G, Kaushal S, Mahdavi V, Nadal-Ginard B . (1993). Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72: 309–324.

    CAS  PubMed  Google Scholar 

  • Harbour JW, Dean DC . (2000). The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14: 2393–2409.

    CAS  PubMed  Google Scholar 

  • Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC . (1999). Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98: 859–869.

    CAS  PubMed  Google Scholar 

  • Hediger F, Gasser SM . (2006). Heterochromatin protein 1: don’t judge the book by its cover!. Curr Opin Genet Dev 16: 143–150.

    CAS  PubMed  Google Scholar 

  • Herrera RE, Chen F, Weinberg RA . (1996). Increased histone H1 phosphorylation and relaxed chromatin structure in Rb-deficient fibroblasts. Proc Natl Acad Sci U S A 93: 11510–11515.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschi A, Cecchini M, Steinhardt RC, Schamber MR, Dick FA, Rubin SM . (2010). An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein. Nat Struct Mol Biol 17: 1051–1057.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue Y, Kitagawa M, Taya Y . (2007). Phosphorylation of pRB at Ser612 by Chk1/2 leads to a complex between pRB and E2F-1 after DNA damage. EMBO J 26: 2083–2093.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova IA, Nakrieko KA, Dagnino L . (2009). Phosphorylation by p38 MAP kinase is required for E2F1 degradation and keratinocyte differentiation. Oncogene 28: 52–62.

    CAS  PubMed  Google Scholar 

  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA . (1992). Effects of an Rb mutation in the mouse. Nature 359: 295–300.

    CAS  PubMed  Google Scholar 

  • Jackson PK, Eldridge AG . (2002). The SCF ubiquitin ligase: an extended look. Mol Cell 9: 923–925.

    CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD . (2001). Translating the histone code. Science 293: 1074–1080.

    CAS  PubMed  Google Scholar 

  • Khidr L, Chen PL . (2006). RB, the conductor that orchestrates life, death and differentiation. Oncogene 25: 5210–5219.

    CAS  PubMed  Google Scholar 

  • Knudsen ES, Wang JY . (1996). Differential regulation of retinoblastoma protein function by specific Cdk phosphorylation sites. J Biol Chem 271: 8313–8320.

    CAS  PubMed  Google Scholar 

  • Knudsen KE, Booth D, Naderi S, Sever-Chroneos Z, Fribourg AF, Hunton IC et al. (2000). RB-dependent S-phase response to DNA damage. Mol Cell Biol 20: 7751–7763.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kontaki H, Talianidis I . (2010). Lysine methylation regulates E2F1-induced cell death. Mol Cell 39: 152–160.

    CAS  PubMed  Google Scholar 

  • Ledl A, Schmidt D, Muller S . (2005). Viral oncoproteins E1A and E7 and cellular LxCxE proteins repress SUMO modification of the retinoblastoma tumor suppressor. Oncogene 24: 3810–3818.

    CAS  PubMed  Google Scholar 

  • Leduc C, Claverie P, Eymin B, Col E, Khochbin S, Brambilla E et al. (2006). p14ARF promotes RB accumulation through inhibition of its Tip60-dependent acetylation. Oncogene 25: 4147–4154.

    CAS  PubMed  Google Scholar 

  • Lents NH, Gorges LL, Baldassare JJ . (2006). Reverse mutational analysis reveals threonine-373 as a potentially sufficient phosphorylation site for inactivation of the retinoblastoma tumor suppressor protein (pRB). Cell Cycle 5: 1699–1707.

    CAS  PubMed  Google Scholar 

  • Lin WC, Lin FT, Nevins JR . (2001). Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev 15: 1833–1844.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Lin FT, Ruppert JM, Lin WC . (2003). Regulation of E2F1 by BRCT domain-containing protein TopBP1. Mol Cell Biol 23: 3287–3304.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Luo Y, Lin FT, Lin WC . (2004). TopBP1 recruits Brg1/Brm to repress E2F1-induced apoptosis, a novel pRb-independent and E2F1-specific control for cell survival. Genes Dev 18: 673–686.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longworth MS, Dyson NJ . (2010). pRb, a local chromatin organizer with global possibilities. Chromosoma 119: 1–11.

    CAS  PubMed  Google Scholar 

  • Lowe ED, Tews I, Cheng KY, Brown NR, Gul S, Noble ME et al. (2002). Specificity determinants of recruitment peptides bound to phospho-CDK2/cyclin A. Biochemistry 41: 15625–15634.

    CAS  PubMed  Google Scholar 

  • Ludlow JW, Glendening CL, Livingston DM, DeCarprio JA . (1993). Specific enzymatic dephosphorylation of the retinoblastoma protein. Mol Cell Biol 13: 367–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacLellan WR, Xiao G, Abdellatif M, Schneider MD . (2000). A novel Rb- and p300-binding protein inhibits transactivation by MyoD. Mol Cell Biol 20: 8903–8915.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markham D, Munro S, Soloway J, O'Connor DP, La Thangue NB . (2006). DNA-damage-responsive acetylation of pRb regulates binding to E2F-1. EMBO Rep 7: 192–198.

    CAS  PubMed  Google Scholar 

  • Martelli F, Hamilton T, Silver DP, Sharpless NE, Bardeesy N, Rokas M et al. (2001). p19ARF targets certain E2F species for degradation. Proc Natl Acad Sci U S A 98: 4455–4460.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marti A, Wirbelauer C, Scheffner M, Krek W . (1999). Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol 1: 14–19.

    CAS  PubMed  Google Scholar 

  • Martin C, Zhang Y . (2005). The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6: 838–849.

    CAS  PubMed  Google Scholar 

  • Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T . (2000). Regulation of E2F1 activity by acetylation. EMBO J 19: 662–671.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K, Giacca M . (2000). E2F family members are differentially regulated by reversible acetylation. J Biol Chem 275: 10887–10892.

    CAS  PubMed  Google Scholar 

  • Meek DW, Anderson CW . (2009). Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1: a000950.

    PubMed  PubMed Central  Google Scholar 

  • Min J, Allali-Hassani A, Nady N, Qi C, Ouyang H, Liu Y et al. (2007). L3MBTL1 recognition of mono- and dimethylated histones. Nat Struct Mol Biol 14: 1229–1230.

    CAS  PubMed  Google Scholar 

  • Mittnacht S . (1998). Control of pRB phosphorylation. Curr Opin Genet Dev 8: 21–27.

    CAS  PubMed  Google Scholar 

  • Miyake S, Sellers WR, Safran M, Li X, Zhao W, Grossman SR et al. (2000). Cells degrade a novel inhibitor of differentiation with E1A-like properties upon exiting the cell cycle. Mol Cell Biol 20: 8889–8902.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller S, Hoege C, Pyrowolakis G, Jentsch S . (2001). SUMO, ubiquitin's mysterious cousin. Nat Rev Mol Cell Biol 2: 202–210.

    CAS  PubMed  Google Scholar 

  • Muller S, Ledl A, Schmidt D . (2004). SUMO: a regulator of gene expression and genome integrity. Oncogene 23: 1998–2008.

    PubMed  Google Scholar 

  • Munro S, Khaire N, Inche A, Carr S, La Thangue NB . (2010). Lysine methylation regulates the pRb tumour suppressor protein. Oncogene 29: 2357–2367.

    CAS  PubMed  Google Scholar 

  • Nath N, Wang S, Betts V, Knudsen E, Chellappan S . (2003). Apoptotic and mitogenic stimuli inactivate Rb by differential utilization of p38 and cyclin-dependent kinases. Oncogene 22: 5986–5994.

    CAS  PubMed  Google Scholar 

  • Nguyen DX, Baglia LA, Huang SM, Baker CM, McCance DJ . (2004). Acetylation regulates the differentiation-specific functions of the retinoblastoma protein. EMBO J 23: 1609–1618.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pediconi N, Ianari A, Costanzo A, Belloni L, Gallo R, Cimino L et al. (2003). Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol 5: 552–558.

    CAS  PubMed  Google Scholar 

  • Pickard A, Wong PP, McCance DJ . (2010). Acetylation of Rb by PCAF is required for nuclear localization and keratinocyte differentiation. J Cell Sci 123: 3718–3726.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pickart CM, Eddins MJ . (2004). Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695: 55–72.

    CAS  PubMed  Google Scholar 

  • Polager S, Ginsberg D . (2008). E2F - at the crossroads of life and death. Trends Cell Biol 18: 528–535.

    CAS  PubMed  Google Scholar 

  • Puri PL, Sartorelli V, Yang XJ, Hamamori Y, Ogryzko VV, Howard BH et al. (1997). Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol Cell 1: 35–45.

    CAS  PubMed  Google Scholar 

  • Rubin SM, Gall AL, Zheng N, Pavletich NP . (2005). Structure of the Rb C-terminal domain bound to E2F1-DP1: a mechanism for phosphorylation-induced E2F release. Cell 123: 1093–1106.

    CAS  PubMed  Google Scholar 

  • Saddic LA, West LE, Aslanian A, Yates 3rd JR, Rubin SM, Gozani O et al. (2010). Methylation of the retinoblastoma tumor suppressor by SMYD2. J Biol Chem 285: 37733–37740.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahin F, Sladek TL . (2010). E2F-1 binding affinity for pRb is not the only determinant of the E2F-1 activity. Int J Biol Sci 6: 382–395.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schulman BA, Lindstrom DL, Harlow E . (1998). Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc Natl Acad Sci U S A 95: 10453–10458.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherr CJ . (2000). The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 60: 3689–3695.

    CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM . (2004). Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18: 2699–2711.

    CAS  PubMed  Google Scholar 

  • Sims 3rd RJ, Reinberg D . (2008). Is there a code embedded in proteins that is based on post-translational modifications? Nat Rev Mol Cell Biol 9: 815–820.

    CAS  PubMed  Google Scholar 

  • Stevens C, La Thangue NB . (2003). E2F and cell cycle control: a double-edged sword. Arch Biochem Biophys 412: 157–169.

    CAS  PubMed  Google Scholar 

  • Stevens C, Smith L, La Thangue NB . (2003). Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 5: 401–409.

    CAS  PubMed  Google Scholar 

  • Templeton DJ, Park SH, Lanier L, Weinberg RA . (1991). Nonfunctional mutants of the retinoblastoma protein are characterized by defects in phosphorylation, viral oncoprotein association, and nuclear tethering. Proc Natl Acad Sci U S A 88: 3033–3037.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trimarchi JM, Lees JA . (2002). Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3: 11–20.

    CAS  PubMed  Google Scholar 

  • Trouche D, Cook A, Kouzarides T . (1996). The CBP co-activator stimulates E2F1/DP1 activity. Nucleic Acids Res 24: 4139–4145.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida C, Miwa S, Kitagawa K, Hattori T, Isobe T, Otani S et al. (2005). Enhanced Mdm2 activity inhibits pRB function via ubiquitin-dependent degradation. EMBO J 24: 160–169.

    CAS  PubMed  Google Scholar 

  • Wang B, Liu K, Lin FT, Lin WC . (2004). A role for 14-3-3 tau in E2F1 stabilization and DNA damage-induced apoptosis. J Biol Chem 279: 54140–54152.

    CAS  PubMed  Google Scholar 

  • Wang S, Nath N, Minden A, Chellappan S . (1999). Regulation of Rb and E2F by signal transduction cascades: divergent effects of JNK1 and p38 kinases. EMBO J 18: 1559–1570.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg RA . (1995). The retinoblastoma protein and cell cycle control. Cell 81: 323–330.

    CAS  PubMed  Google Scholar 

  • Wilkinson KA, Henley JM . (2010). Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 428: 133–145.

    CAS  PubMed  Google Scholar 

  • Wong S, Weber JD . (2007). Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J 407: 451–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao ZX, Chen J, Levine AJ, Modjtahedi N, Xing J, Sellers WR et al. (1995). Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375: 694–698.

    CAS  PubMed  Google Scholar 

  • Xu M, Sheppard KA, Peng CY, Yee AS, Piwnica-Worms H . (1994). Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation. Mol Cell Biol 14: 8420–8431.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XJ . (2004). Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 26: 1076–1087.

    CAS  PubMed  Google Scholar 

  • Yeste-Velasco M, Folch J, Pallas M, Camins A . (2009). The p38(MAPK) signaling pathway regulates neuronal apoptosis through the phosphorylation of the retinoblastoma protein. Neurochem Int 54: 99–105.

    CAS  PubMed  Google Scholar 

  • Zarkowska T, Mittnacht S . (1997). Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases. J Biol Chem 272: 12738–12746.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Reinberg D . (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15: 2343–2360.

    CAS  PubMed  Google Scholar 

  • Zhang Z, Wang H, Li M, Rayburn ER, Agrawal S, Zhang R . (2005). Stabilization of E2F1 protein by MDM2 through the E2F1 ubiquitination pathway. Oncogene 24: 7238–7247.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from CRUK, MRC, LRF, EU and AICR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N B La Thangue.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munro, S., Carr, S. & La Thangue, N. Diversity within the pRb pathway: is there a code of conduct?. Oncogene 31, 4343–4352 (2012). https://doi.org/10.1038/onc.2011.603

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.603

Keywords

This article is cited by

Search

Quick links