Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transtumoral targeting enabled by a novel neuropilin-binding peptide

Abstract

We have recently described a class of peptides that improve drug delivery by increasing penetration of drugs into solid tumors. These peptides contain a C-terminal C-end Rule (CendR) sequence motif (R/K)XX(R/K), which is responsible for cell internalization and tissue-penetration activity. Tumor-specific CendR peptides contain both a tumor-homing motif and a cryptic CendR motif that is proteolytically unmasked in tumor tissue. A previously described cyclic tumor-homing peptide, LyP-1 (sequence: CGNKRTRGC), contains a CendR element and is capable of tissue penetration. We use here the truncated form of LyP-1, in which the CendR motif is exposed (CGNKRTR; tLyP-1), and show that both LyP-1 and tLyP-1 internalize into cells through the neuropilin-1-dependent CendR internalization pathway. Moreover, we show that neuropilin-2 also binds tLyP-1 and that this binding equally activates the CendR pathway. Fluorescein-labeled tLyP-1 peptide and tLyP-1-conjugated nanoparticles show robust and selective homing to tumors, penetrating from the blood vessels into the tumor parenchyma. The truncated peptide is more potent in this regard than the parent peptide LyP-1. tLyP-1 furthermore improves extravasation of a co-injected nanoparticle into the tumor tissue. These properties make tLyP-1 a promising tool for targeted delivery of therapeutic and diagnostic agents to breast cancers and perhaps other types of tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Acevedo LM, Barillas S, Weis SM, Gothert JR, Cheresh DA . (2008). Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor. Blood 111: 2674–2680.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agemy L, Friedmann-Morvinski D, Kotamraju VR, Roth L, Sugahara KN, Girard OM et al. (2011). Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc Natl Acad Sci USA 108: 17450–17455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agemy L, Sugahara KN, Kotamraju VR, Gujraty K, Girard OM, Kono Y et al. (2010). Nanoparticle-induced vascular blockade in human prostate cancer. Blood 116: 2847–2856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagri A, Tessier-Lavigne M, Watts RJ . (2009). Neuropilins in tumor biology. Clin Cancer Res 15: 1860–1864.

    Article  CAS  PubMed  Google Scholar 

  • Becker PM, Waltenberger J, Yachechko R, Mirzapoiazova T, Sham JS, Lee CG et al. (2005). Neuropilin-1 regulates vascular endothelial growth factor-mediated endothelial permeability. Circ Res 96: 1257–1265.

    Article  CAS  PubMed  Google Scholar 

  • Caunt M, Mak J, Liang WC, Stawicki S, Pan Q, Tong RK et al. (2008). Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 13: 331–342.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chedotal A, He Z, Goodman CS, Tessier-Lavigne M . (1997). Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron 19: 547–559.

    Article  CAS  PubMed  Google Scholar 

  • Dallas NA, Gray MJ, Xia L, Fan F, van Buren 2nd G, Gaur P et al. (2008). Neuropilin-2-mediated tumor growth and angiogenesis in pancreatic adenocarcinoma. Clin Cancer Res 14: 8052–8060.

    Article  CAS  PubMed  Google Scholar 

  • Ellis LM . (2006). The role of neuropilins in cancer. Mol Cancer Ther 5: 1099–1107.

    Article  CAS  PubMed  Google Scholar 

  • Fogal V, Zhang L, Krajewski S, Ruoslahti E . (2008). Mitochondrial/cell-surface protein p32/gC1qR as a molecular target in tumor cells and tumor stroma. Cancer Res 68: 7210–7218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G . (2000). Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165 [corrected]. J Biol Chem 275: 18040–18045.

    Article  CAS  PubMed  Google Scholar 

  • Greish K . (2007). Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 15: 457–464.

    Article  CAS  PubMed  Google Scholar 

  • Guttmann-Raviv N, Kessler O, Shraga-Heled N, Lange T, Herzog Y, Neufeld G . (2006). The neuropilins and their role in tumorigenesis and tumor progression. Cancer Lett 231: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Hamzah J, Kotamraju VR, Seo JW, Agemy L, Fogal V, Mahakian LM et al. (2011). Specific penetration and accumulation of a homing peptide within atherosclerotic plaques of apolipoprotein E-deficient mice. Proc Natl Acad Sci USA 108: 7154–7159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haspel N, Zanuy D, Nussinov R, Teesalu T, Ruoslahti E, Aleman C . (2011). Binding of a C-end rule peptide to the neuropilin-1 receptor: a molecular modeling approach. Biochemistry 50: 1755–1762.

    Article  CAS  PubMed  Google Scholar 

  • He Z, Tessier-Lavigne M . (1997). Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90: 739–751.

    Article  CAS  PubMed  Google Scholar 

  • Heldin CH, Rubin K, Pietras K, Ostman A . (2004). High interstitial fluid pressure -- an obstacle in cancer therapy. Nat Rev Cancer 4: 806–813.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman JA, Giraudo E, Singh M, Zhang L, Inoue M, Porkka K et al. (2003). Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma. Cancer Cell 4: 383–391.

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO . (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687.

    Article  CAS  PubMed  Google Scholar 

  • Jain RK . (1999). Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1: 241–263.

    Article  CAS  PubMed  Google Scholar 

  • Karmali PP, Kotamraju VR, Kastantin M, Black M, Missirlis D, Tirrell M et al. (2009). Targeting of albumin-embedded paclitaxel nanoparticles to tumors. Nanomedicine 5: 73–82.

    Article  CAS  PubMed  Google Scholar 

  • Kolodkin AL, Levengood DV, Rowe EG, Tai YT, Giger RJ, Ginty DD . (1997). Neuropilin is a semaphorin III receptor. Cell 90: 753–762.

    Article  CAS  PubMed  Google Scholar 

  • Laakkonen P, Akerman ME, Biliran H, Yang M, Ferrer F, Karpanen T et al. (2004). Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc Natl Acad Sci USA 101: 9381–9386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laakkonen P, Porkka K, Hoffman JA, Ruoslahti E . (2002). A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med 8: 751–755.

    Article  CAS  PubMed  Google Scholar 

  • Liang WC, Dennis MS, Stawicki S, Chanthery Y, Pan Q, Chen Y et al. (2007). Function blocking antibodies to neuropilin-1 generated from a designed human synthetic antibody phage library. J Mol Biol 366: 815–829.

    Article  CAS  PubMed  Google Scholar 

  • Mamluk R, Klagsbrun M, Detmar M, Bielenberg DR . (2005). Soluble neuropilin targeted to the skin inhibits vascular permeability. Angiogenesis 8: 217–227.

    Article  CAS  PubMed  Google Scholar 

  • Pan Q, Chanthery Y, Liang WC, Stawicki S, Mak J, Rathore N et al. (2007). Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 11: 53–67.

    Article  CAS  PubMed  Google Scholar 

  • Park JH, von Maltzahn G, Zhang L, Derfus AM, Simberg D, Harris TJ et al. (2009). Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 5: 694–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruoslahti E . (2002a). Specialization of tumour vasculature. Nat Rev Cancer 2: 83–90.

    Article  PubMed  Google Scholar 

  • Ruoslahti E . (2002b). Drug targeting to specific vascular sites. Drug Discov Today 7: 1138–1143.

    Article  CAS  PubMed  Google Scholar 

  • Ruoslahti E, Bhatia SN, Sailor MJ . (2010). Targeting of drugs and nanoparticles to tumors. J Cell Biol 188: 759–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M . (1998). Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92: 735–745.

    Article  CAS  PubMed  Google Scholar 

  • Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Girard OM et al. (2009). Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16: 510–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR et al. (2010). Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328: 1031–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi S, Tsuji T, Amagai T, Takamatsu T, Fujisawa H . (1987). Specific cell surface labels in the visual centers of Xenopus laevis tadpole identified using monoclonal antibodies. Dev Biol 122: 90–100.

    Article  CAS  PubMed  Google Scholar 

  • Teesalu T, Sugahara KN, Kotamraju VR, Ruoslahti E . (2009). C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc Natl Acad Sci USA 106: 16157–16162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorek DL, Chen AK, Czupryna J, Tsourkas A . (2006). Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34: 23–38.

    Article  PubMed  Google Scholar 

  • Uchida M, Kosuge H, Terashima M, Willits DA, Liepold LO, Young MJ et al. (2011). Protein cage nanoparticles bearing the LyP-1 peptide for enhanced imaging of macrophage-rich vascular lesions. ACS Nano 5: 2493–2502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Maltzahn G, Ren Y, Park JH, Min DH, Kotamraju VR, Jayakumar J et al. (2008). In vivo tumor cell targeting with ‘click’ nanoparticles. Bioconjug Chem 19: 1570–1578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Eva Engvall for comments on the manuscript. This work was supported by grant number W81XWH-09-1-0698 and W81XWH-08-1-0727 from the USAMRAA for the Department of Defense (ER). LR was supported by Susan G Komen for the Cure post-doctoral fellowship (KG091411) and GB by a fellowship from the Santa Barbara Cancer Center. ER was supported in part by CA30199 the Cancer Center Support Grant from the NCI.

Author contributions: ER and LR designed the research; LR, LA, TT, KNS and JH performed the research; LA, GB and VRK contributed reagents; LR and ER analyzed the data and wrote the paper. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Ruoslahti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, L., Agemy, L., Kotamraju, V. et al. Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene 31, 3754–3763 (2012). https://doi.org/10.1038/onc.2011.537

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.537

Keywords

This article is cited by

Search

Quick links