Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nuclear transport receptor karyopherin-α2 promotes malignant breast cancer phenotypes in vitro

Abstract

Tumorigenesis and tumor progression are associated with dysfunction of the nuclear transport machinery at the level of import and export receptors (karyopherins). Recent studies have shown that the nuclear import factor karyopherin-α2 (KPNA2) is a novel prognostic marker for poor prognosis in human breast cancer. Based on the well-defined hallmarks of cancer progression, we performed a detailed in vitro characterization of the phenotypic effects caused by KPNA2 overexpression and KPNA2 silencing in benign and malignant human breast cells. KPNA2 overexpression clearly increased proliferation of MCF7 tumor cells and further led to a reduction of cell–matrix adhesion in benign MCF10A cells, whereas cell migration was significantly increased (P<0.0001) in both tumor models. Remarkably, these individual effects of KPNA2 overexpression on proliferation, cell–matrix adhesion and migration resulted in an increased colony spreading of benign MCF10A breast cells and malignant MCF7 tumor cells (P<0.001), which is a hallmark of cancer progression. Conversely, RNA interference-mediated KPNA2 silencing caused a complete inhibition of MCF7 tumor cell proliferation and migration (P<0.0001). In addition, in these experiments apoptosis was increased (P<0.05) and formation of tumor cell colonies was reduced (P<0.01). Thus, KPNA2 overexpression provoked increased aggressiveness of malignant MCF7 breast tumor cells and induced a shift in benign MCF10A breast cells toward a malignant breast cancer phenotype. In conclusion, we demonstrate for the first time in experimental tumor models that forced KPNA2 expression drives malignant features relevant for breast cancer progression, while its silencing is required for the remission of those progressive phenotypes. This study gives clear evidence that KPNA2 acts as a novel oncogenic factor in human breast cancer, in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Ben Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40: 499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunet A, Brondello JM, L'Allemain G, Lenormand P, McKenzie F, Pages G et al. (1995). [MAP kinase module: role in the control of cell proliferation]. C R Seances Soc Biol Fil 189: 43–57.

    CAS  PubMed  Google Scholar 

  • Cavallaro U, Christofori G. (2001). Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough. Biochim Biophys Acta 1552: 39–45.

    CAS  PubMed  Google Scholar 

  • Chook YM, Blobel G. (2001). Karyopherins and nuclear import. Curr Opin Struct Biol 11: 703–715.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham MD, Cleaveland J, Nadler SG . (2003). An intracellular targeted nls peptide inhibitor of karyopherin Alpha:NF-Kappa B interactions. Biochem Biophys Res Commun 300: 403–407.

    Article  CAS  PubMed  Google Scholar 

  • Dahl E, Kristiansen G, Gottlob K, Klaman I, Ebner E, Hinzmann B et al. (2006). Molecular profiling of laser-microdissected matched tumor and normal breast tissue identifies karyopherin alpha2 as a potential novel prognostic marker in breast cancer. Clin Cancer Res 12: 3950–3960.

    Article  CAS  PubMed  Google Scholar 

  • Dahl E, Sadr-Nabavi A, Klopocki E, Betz B, Grube S, Kreutzfeld R et al. (2005). Systematic identification and molecular characterization of genes differentially expressed in breast and ovarian cancer. J Pathol 205: 21–28.

    Article  CAS  PubMed  Google Scholar 

  • Dankof A, Fritzsche FR, Dahl E, Pahl S, Wild P, Dietel M et al. (2007). KPNA2 protein expression in invasive breast carcinoma and matched peritumoral ductal carcinoma in situ. Virchows Arch 451: 877–881.

    Article  CAS  PubMed  Google Scholar 

  • Ezeh UI, Turek PJ, Reijo RA, Clark AT. (2005). Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 104: 2255–2265.

    Article  CAS  PubMed  Google Scholar 

  • Flamini G, Curigliano G, Ratto C, Astone A, Ferretti G, Nucera P et al. (1996). Prognostic significance of cytoplasmic P53 overexpression in colorectal cancer. An immunohistochemical analysis. Eur J Cancer 32A: 802–806.

    Article  CAS  PubMed  Google Scholar 

  • Gluz O, Wild P, Meiler R, Diallo-Danebrock R, Ting E, Mohrmann S et al. (2008). Nuclear karyopherin alpha2 expression predicts poor survival in patients with advanced breast cancer irrespective of treatment intensity. Int J Cancer 123: 1433–1438.

    Article  CAS  PubMed  Google Scholar 

  • Goldfarb DS, Corbett AH, Mason DA, Harreman MT, Adam SA. (2004). Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol 14: 505–514.

    Article  CAS  PubMed  Google Scholar 

  • Gorlich D. (1998). Transport into and out of the cell nucleus. EMBO J 17: 2721–2727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall PA, Levison DA, Woods AL, Yu CC, Kellock DB, Watkins JA et al. (1990). Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J Pathol 162: 285–294.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA. (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Harreman MT, Cohen PE, Hodel MR, Truscott GJ, Corbett AH, Hodel AE. (2003). Characterization of the auto-inhibitory sequence within the N-terminal domain of importin alpha. J Biol Chem 278: 21361–21369.

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Liu S, Breiter DR, Wang F, Tang Y, Sun S. (2008). Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 68: 6533–6540.

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Cao Y, Greten FR, Li ZW. (2002). NF-KappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2: 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Kau TR, Way JC, Silver PA. (2004). Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer 4: 106–117.

    Article  CAS  PubMed  Google Scholar 

  • Klein A, Wessel R, Graessmann M, Jurgens M, Petersen I, Schmutzler R et al. (2007). Comparison of gene expression data from human and mouse breast cancers: identification of a conserved breast tumor gene set. Int J Cancer 121: 683–688.

    Article  CAS  PubMed  Google Scholar 

  • Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH. (2007). Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 282: 5101–5105.

    Article  CAS  PubMed  Google Scholar 

  • Lauffenburger DA, Horwitz AF. (1996). Cell migration: a physically integrated molecular process. Cell 84: 359–369.

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Pochampally R, Chen L, Traidej M, Wang Y, Chen J. (2000). Nuclear exclusion of P53 in a subset of tumors requires MDM2 function. Oncogene 19: 232–240.

    Article  CAS  PubMed  Google Scholar 

  • Mayhew TM, Muhlfeld C, Vanhecke D, Ochs M. (2009). A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs. Ann Anat 191: 153–170.

    Article  CAS  PubMed  Google Scholar 

  • Mortezavi A, Hermanns T, Seifert HH, Baumgartner M, Provenzano M, Sulser T et al. (2011). KPNA2 expression is an independent adverse predictor of biochemical recurrence after radical prostatectomy. Clin Cancer Res 17: 1111–1121.

    Article  CAS  PubMed  Google Scholar 

  • Mosammaparast N, Pemberton LF. (2004). Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol 14: 547–556.

    Article  CAS  PubMed  Google Scholar 

  • Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. (2006). A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10: 515–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noetzel E, Veeck J, Niederacher D, Galm O, Horn F, Hartmann A et al. (2008). Promoter methylation-associated loss of ID4 expression is a marker of tumour recurrence in human breast cancer. BMC Cancer 8: 154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Olson MF, Ashworth A, Hall A. (1995). An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269: 1270–1272.

    Article  CAS  PubMed  Google Scholar 

  • Pankov R, Endo Y, Even-Ram S, Araki M, Clark K, Cukierman E et al. (2005). A Rac switch regulates random versus directionally persistent cell migration. J Cell Biol 170: 793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paris S, Sesboue R, Delpech B, Chauzy C, Thiberville L, Martin JP et al. (2002). Inhibition of tumor growth and metastatic spreading by overexpression of inter-alpha-trypsin inhibitor family chains. Int J Cancer 97: 615–620.

    Article  CAS  PubMed  Google Scholar 

  • Pawlak G, Helfman DM. (2001). Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev 11: 41–47.

    Article  CAS  PubMed  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de RM, Jeffrey SS, Rees CA et al. (2000). Molecular portraits of human breast tumours. Nature 406: 747–752.

    Article  CAS  PubMed  Google Scholar 

  • Radu A, Moore MS, Blobel G. (1995). The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 81: 215–222.

    Article  CAS  PubMed  Google Scholar 

  • Raftopoulou M, Hall A. (2004). Cell migration: Rho GTPases lead the way. Dev Biol 265: 23–32.

    Article  CAS  PubMed  Google Scholar 

  • Rayet B, Gelinas C. (1999). Aberrant Rel/Nfkb genes and activity in human cancer. Oncogene 18: 6938–6947.

    Article  CAS  PubMed  Google Scholar 

  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G et al. (2003). Cell migration: integrating signals from front to back. Science 302: 1704–1709.

    Article  CAS  PubMed  Google Scholar 

  • Runnebaum IB, Kieback DG, Mobus VJ, Tong XW, Kreienberg R. (1996). Subcellular localization of accumulated P53 in ovarian cancer cells. Gynecol Oncol 61: 266–271.

    Article  CAS  PubMed  Google Scholar 

  • Sakai M, Sohda M, Miyazaki T, Suzuki S, Sano A, Tanaka N et al. (2010). Significance of karyopherin-{alpha} 2 (KPNA2) expression in esoph. Anticancer Res 30: 851–856.

    PubMed  Google Scholar 

  • Sandrock K, Bielek H, Schradi K, Schmidt G, Klugbauer N. (2010). The nuclear import of the small GTPase Rac1 is mediated by the direct interaction with karyopherin alpha2. Traffic 11: 198–209.

    Article  CAS  PubMed  Google Scholar 

  • Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100: 8418–8423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart-Harris R, Caldas C, Pinder SE, Pharoah P. (2008). Proliferation markers and survival in early breast cancer: a systematic review and meta-analysis of 85 studies in 32 825 patients. Breast 17: 323–334.

    Article  CAS  PubMed  Google Scholar 

  • Veeck J, Chorovicer M, Naami A, Breuer E, Zafrakas M, Bektas N et al. (2008). The extracellular matrix protein ITIH5 Is a novel prognostic marker in invasive node-negative breast cancer and its aberrant expression is caused by promoter hypermethylation. Oncogene 27: 865–876.

    Article  CAS  PubMed  Google Scholar 

  • Wang CI, Wang CL, Wang CW, Chen CD, Wu CC, Liang Y et al. (2011). Importin subunit alpha-2 is identified as a potential biomarker for non-small cell lung cancer by integration of the cancer cell secretome and tissue transcriptome. Int J Cancer 128: 2364–2372.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The excellent technical assistance of Sonja von Serényi is thankfully acknowledged. This work was supported by a grant from the Mediacal Faculty of the RWTH Aachen (START program ‘Tumor marker and their function’ Project 1: Inflammation and Cancer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Dahl.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noetzel, E., Rose, M., Bornemann, J. et al. Nuclear transport receptor karyopherin-α2 promotes malignant breast cancer phenotypes in vitro. Oncogene 31, 2101–2114 (2012). https://doi.org/10.1038/onc.2011.403

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.403

Keywords

This article is cited by

Search

Quick links