Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inner nuclear membrane protein TMEM201 promotes breast cancer metastasis by positive regulating TGFβ signaling

Abstract

Emerging evidence shows the association between nuclear envelope and tumor progression, however, the functional contributions of specific constituents of the nuclear envelope remain largely unclear. We found that the expression level of transmembrane protein 201 (TMEM201), an integral inner nuclear membrane protein of unknown function, was significantly elevated in invasive breast cancer and predicted poor breast cancer prognosis. We showed that TMEM201, as a positive modulator, was both necessary and sufficient to regulate the migration and invasion of breast cancer cells in vitro and in vivo. Mechanistically, RNA-sequencing analysis and validation showed that TMEM201 deficiency inhibited epithelial-to-mesenchymal transition and transforming growth factor-β signaling. Finally, we showed that TMEM201 physically interacted with SMAD2/3 and was required for the phosphorylation of SMAD2/3, nuclear translocation and transcriptional activation of the TGFβ. Thus, we demonstrated that specific inner nuclear membrane component mediated signal-dependent transcriptional effects to control breast cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TMEM201 is increased in triple-negative breast cancers (TNBC).
Fig. 2: Loss of TMEM201 inhibits cell migration and invasion but does not affect cell proliferation.
Fig. 3: TMEM201 promotes cell migration and invasion but does not affect cell proliferation.
Fig. 4: TMEM201 promotes breast cancer lung metastasis.
Fig. 5: Loss of TMEM201 inhibits EMT and TGFβ signaling.
Fig. 6: Deficiency of TMEM201 leads to a decrease in phosphorylation of SMAD2/3.

Similar content being viewed by others

Code availability

R language package of survival can be accessed in Supplementary Table 6.

References

  1. Hetzer MW. The nuclear envelope. Cold Spring Harb Perspect Biol. 2010;2:a000539.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL. The nuclear lamina comes of age. Nat Rev Mol Cell Biol. 2005;6:21–31.

    Article  CAS  PubMed  Google Scholar 

  3. Goldberg M, Lu H, Stuurman N, Ashery-Padan R, Weiss AM, Yu J, et al. Interactions among Drosophila nuclear envelope proteins lamin, otefin, and YA. Mol Cell Biol. 1998;18:4315–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schirmer EC, Foisner R. Proteins that associate with lamins: many faces, many functions. Exp Cell Res. 2007;313:2167–79.

    Article  CAS  PubMed  Google Scholar 

  5. Dreger M, Bengtsson L, Schöneberg T, Otto H, Hucho F. Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane. Proc Natl Acad Sci USA. 2001;98:11943–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Korfali N, Wilkie GS, Swanson SK, Srsen V, Batrakou DG, Fairley EA, et al. The leukocyte nuclear envelope proteome varies with cell activation and contains novel transmembrane proteins that affect genome architecture. Mol Cell Proteom. 2010;9:2571–85.

    Article  CAS  Google Scholar 

  7. Schirmer EC, Florens L, Guan T, Yates JR 3rd, Gerace L. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science.2003;301:1380–2.

    Article  CAS  PubMed  Google Scholar 

  8. Wilkie GS, Korfali N, Swanson SK, Malik P, Srsen V, Batrakou DG, et al. Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations. Mol Cell Proteom. 2011;10:M110.003129.

    Article  Google Scholar 

  9. Korfali N, Wilkie GS, Swanson SK, Srsen V, de Las Heras J, Batrakou DG, et al. The nuclear envelope proteome differs notably between tissues. Nucleus.2012;3:552–64.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schreiber KH, Kennedy BK. When lamins go bad: nuclear structure and disease. Cell.2013;152:1365–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi J, Li C, Wang H, Xiao B, Qiu W. NUP58 facilitates metastasis and epithelial-mesenchymal transition of lung adenocarcinoma via the GSK-3β/Snail signaling pathway. Am J Transl Res. 2019;11:393–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu T, Bao Z, Wang Y, Yang L, Lu B, Yan K, et al. Karyopherinβ1 regulates proliferation of human glioma cells via Wnt/β-catenin pathway. Biochem Biophys Res Commun. 2016;478:1189–97.

    Article  CAS  PubMed  Google Scholar 

  13. Rodriguez-Bravo V, Pippa R, Song WM, Carceles-Cordon M, Dominguez-Andres A, Fujiwara N, et al. Nuclear pores promote lethal prostate cancer by increasing POM121-Driven E2F1, MYC, and AR nuclear import. Cell.2018;174:1200–15.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bell ES, Lammerding J. Causes and consequences of nuclear envelope alterations in tumour progression. Eur J Cell Biol. 2016;95:449–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Las Heras JI, Batrakou DG, Schirmer EC. Cancer biology and the nuclear envelope: a convoluted relationship. Semin Cancer Biol. 2013;23:125–37.

    Article  PubMed  Google Scholar 

  16. Chow KH, Factor RE, Ullman KS. The nuclear envelope environment and its cancer connections. Nat Rev Cancer. 2012;12:196–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  18. Weigelt B, Peterse JL, van ‘t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5:591–602.

    Article  CAS  PubMed  Google Scholar 

  19. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol. 2018;36:2105–22.

    Article  CAS  PubMed  Google Scholar 

  20. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N. Engl J Med. 2010;363:1938–48.

    Article  CAS  PubMed  Google Scholar 

  21. Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26:1275–81..

  22. Kao KJ, Chang KM, Hsu HC, Huang AT. Correlation of microarray-based breast cancer molecular subtypes and clinical outcomes: implications for treatment optimization. BMC Cancer. 2011;11:143.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buch C, Lindberg R, Figueroa R, Gudise S, Onischenko E, Hallberg E. An integral protein of the inner nuclear membrane localizes to the mitotic spindle in mammalian cells. J Cell Sci. 2009;122:2100–7.

    Article  CAS  PubMed  Google Scholar 

  26. Dephoure N, Zhou C, Villén J, Beausoleil SA, Bakalarski CE, Elledge SJ, et al. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA. 2008;105:10762–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010;3:ra3.

    Article  PubMed  Google Scholar 

  28. Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJ, et al. Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res. 2013;12:260–71.

    Article  CAS  PubMed  Google Scholar 

  29. Schaffer BE, Levin RS, Hertz NT, Maures TJ, Schoof ML, Hollstein PE, et al. Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction. Cell Metab. 2015;22:907–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Siegel PM, Shu W, Cardiff RD, Muller WJ, Massagué J. Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA. 2003;100:8430–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moustakas A, Heldin CH. Mechanisms of TGFβ-induced epithelial-mesenchymal transition. J Clin Med. 2016;5:63.

    Article  PubMed Central  Google Scholar 

  32. Reis-Sobreiro M, Chen JF, Novitskaya T, You S, Morley S, Steadman K, et al. Emerin deregulation links nuclear shape instability to metastatic potential. Cancer Res. 2018;78:6086–97.

    Article  CAS  PubMed  Google Scholar 

  33. Liu C, Yu H, Shen X, Qiao J, Wu X, Chang J, et al. Prognostic significance and biological function of Lamina-associated polypeptide 2 in non-small-cell lung cancer. Onco Targets Ther. 2019;12:3817–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Borrego-Pinto J, Jegou T, Osorio DS, Auradé F, Gorjánácz M, Koch B. et al. Samp1 is a component of TAN lines and is required for nuclear movement. J Cell Sci. 2012;125:1099–105.

    Article  CAS  PubMed  Google Scholar 

  35. Derynck R, Zhang YE, Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature.2003;425:577–84.

    Article  CAS  PubMed  Google Scholar 

  36. Massagué J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000;19:1745–54.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lin F, Morrison JM, Wu W, Worman HJ. MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor-beta signaling. Hum Mol Genet. 2005;14:437–45.

    Article  CAS  PubMed  Google Scholar 

  38. Pan D, Estévez-Salmerón LD, Stroschein SL, Zhu X, He J, Zhou S, et al. The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem. 2005;280:15992–6001.

    Article  CAS  PubMed  Google Scholar 

  39. Osada S, Ohmori SY, Taira M. XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Development.2003;130:1783–94.

    Article  CAS  PubMed  Google Scholar 

  40. Raju GP, Dimova N, Klein PS, Huang HC. SANE, a novel LEM domain protein, regulates bone morphogenetic protein signaling through interaction with Smad1. J Biol Chem. 2003;278:428–37.

    Article  CAS  PubMed  Google Scholar 

  41. Mansharamani M, Wilson KL. Direct binding of nuclear membrane protein MAN1 to emerin in vitro and two modes of binding to barrier-to-autointegration factor. J Biol Chem. 2005;280:13863–70.

    Article  CAS  PubMed  Google Scholar 

  42. Vijayaraghavan B, Figueroa RA, Bergqvist C, Gupta AJ, Sousa P, Hallberg E. RanGTPase regulates the interaction between the inner nuclear membrane proteins, Samp1 and Emerin. Biochim Biophys Acta Biomembr. 2018;1860:1326–34.

    Article  CAS  PubMed  Google Scholar 

  43. Karlsson G, Liu Y, Larsson J, Goumans MJ, Lee JS, Thorgeirsson SS, et al. Gene expression profiling demonstrates that TGF-beta1 signals exclusively through receptor complexes involving Alk5 and identifies targets of TGF-beta signaling. Physiol Genomics. 2005;21:396–403.

    Article  CAS  PubMed  Google Scholar 

  44. Yang YC, Piek E, Zavadil J, Liang D, Xie D, Heyer J, et al. Hierarchical model of gene regulation by transforming growth factor beta. Proc Natl Acad Sci USA. 2003;100:10269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bengtsson L. What MAN1 does to the Smads. TGFbeta/BMP signaling and the nuclear envelope. FEBS J. 2007;274:1374–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant 31871414, 81971265), Science and Technology Commission of Shanghai Municipality (19JC1416300), Shanghai Institute of Materia Medica (SIMM2004KF-01), Shanghai Municipal Human Resources and Social Security Bureau (Y91204R).

Author information

Authors and Affiliations

Authors

Contributions

YK designed and performed most experiments and data analysis. YTZ helped with the knockout cell line construction and relevant analysis. HLW helped with the TCGA and other databases analysis and RNA sequencing analysis. WJK contributed to the in vivo mouse model construction. HRG assisted the immunoblots. YL helped with the plasmids construction and lentivirus package. JL and YZ participated in experimental design, data interpretation and supervised the project. YK wrote the article. All authors contributed to the final editing and approval of the paper.

Corresponding authors

Correspondence to Yi Zang or Jia Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Y., Zhang, Y., Wang, H. et al. Inner nuclear membrane protein TMEM201 promotes breast cancer metastasis by positive regulating TGFβ signaling. Oncogene 41, 647–656 (2022). https://doi.org/10.1038/s41388-021-02098-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02098-5

This article is cited by

Search

Quick links