Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of p53 expression by peptide-conjugated phosphorodiamidate morpholino oligomers sensitizes human cancer cells to chemotherapeutic drugs

Abstract

The p53 tumor suppressor gene encodes a transcription factor that is commonly mutated in cancer. Tumors arise when premalignant cells are unable to undergo p53-dependent apoptosis, cell cycle arrest or DNA repair. The p53-signaling pathway affects not only tumor development, but also the response of tumors to chemotherapeutic drugs. In this study, we use cell penetrating peptide conjugates of phosphorodiamidate morpholino oligomers (PPMOs) to inhibit p53 expression. We examine the functional properties of endogenous p53 isoforms that are produced upon PPMO-mediated inhibition of p53 translation and splicing, and report that loss of N-terminal or C-terminal sequences interferes with the transcriptional activity of p53. Importantly, we report that PPMO-mediated inhibition of p53 expression sensitizes human cancer cells with wild-type p53 to chemotherapeutic drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abes R, Arzumanov A, Moulton H, Abes S, Ivanova G, Gait MJ et al. (2008). Arginine-rich cell penetrating peptides: design, structure-activity, and applications to alter pre-mRNA splicing by steric-block oligonucleotides. J Pept Sci 14: 455–460.

    Article  CAS  PubMed  Google Scholar 

  • Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B et al. (2009). A mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell 137: 87–98.

    Article  CAS  PubMed  Google Scholar 

  • Banks L, Matlashewski G, Crawford L . (1986). Isolation of human-p53-specific monoclonal antibodies and their use in the studies of human p53 expression. Eur J Biochem 159: 529–534.

    Article  CAS  PubMed  Google Scholar 

  • Bertheau P, Espie M, Turpin E, Lehmann J, Plassa LF, Varna M et al. (2008). TP53 status and response to chemotherapy in breast cancer. Pathobiology 75: 132–139.

    Article  CAS  PubMed  Google Scholar 

  • Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP et al. (2005). P53 isoforms can regulate P53 transcriptional activity. Genes Dev 19: 2122–2137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L et al. (1999). Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104: 263–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtois S, Verhaegh G, North S, Luciani MG, Lassus P, Hibner U et al. (2002). ΔN-p53, a natural isoform of p53 lacking the first transactivation domain, counteracts growth suppression by wild-type p53. Oncogene 21: 6722–6728.

    Article  CAS  PubMed  Google Scholar 

  • El-Deiry WS . (2003). The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22: 7486–7495.

    Article  CAS  PubMed  Google Scholar 

  • Fei P, Bernhard EJ, El-Deiry WS . (2002). Tissue-specific induction of p53 targets in vivo. Cancer Res 62: 7316–7327.

    CAS  PubMed  Google Scholar 

  • Flaman JM, Waridel F, Estreicher A, Vannier A, Limacher JM, Gilbert D et al. (1996). The human tumour suppressor gene p53 is alternatively spliced in normal cells. Oncogene 12: 813–818.

    CAS  PubMed  Google Scholar 

  • Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K, Sohn JJ et al. (2009). p53 isoforms Δ133p53 and p53β are endogenous regulators of replicative cellular senescence. Nat Cell Biol 11: 1135–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Stewart D, Matlashewski G . (2004). Regulation of human p53 activity and cell localization by alternative splicing. Mol Cell Biol 24: 7987–7997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gudkov AV, Komarova EA . (2003). The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer 3: 117–129.

    Article  CAS  PubMed  Google Scholar 

  • Harlow E, Crawford LV, Pim DC, Williamson NM . (1981). Monoclonal antibodies specific for simian virus 40 tumor antigens. J Virol 39: 861–869.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harms KL, Chen X . (2006). The functional domains in p53 family proteins exhibit both common and distinct properties. Cell Death Differ 13: 890–897.

    Article  CAS  PubMed  Google Scholar 

  • Horikawa I, Suzuki M, Oshimura M . (1995). An amino-terminally truncated p53 protein expressed in a human choriocarcinoma cell line, CC1. Hum Mol Genet 4: 313–314.

    Article  CAS  PubMed  Google Scholar 

  • Iversen PL . (2001). Phosphorodiamidate morpholino oligomers: favorable properties for sequence-specific gene inactivation. Curr Opin Mol Ther 3: 235–238.

    CAS  PubMed  Google Scholar 

  • Kim E, Giese A, Deppert W . (2009). Wild-type p53 in cancer cells: when a guardian turns into a blackguard. Biochem Pharmacol 77: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Rogozin IB, Glazko GV . (2005). p53 gain-of-function: tumor biology and bioinformatics come together. Cell Cycle 4: 686–688.

    Article  CAS  PubMed  Google Scholar 

  • Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. (2004). Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119: 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Lim LY, Vidnovic N, Ellisen LW, Leong CO . (2009). Mutant p53 mediates survival of breast cancer cells. Br J Cancer 101: 1606–1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohrum MA, Woods DB, Ludwig RL, Bálint E, Vousden KH . (2001). C-terminal ubiquitination of p53 contributes to nuclear export. Mol Cell Biol 21: 8521–8532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe SW, Ruley HE, Jacks T, Housman DE . (1993a). p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967.

    Article  CAS  PubMed  Google Scholar 

  • Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T . (1993b). p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849.

    Article  CAS  PubMed  Google Scholar 

  • Maier B, Gluba W, Bernier B, Turner T, Mohammad K, Guise T et al. (2004). Modulation of mammalian life span by the short isoform of p53. Genes Dev 18: 306–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGill G, Fisher DE . (1999). P53 and cancer therapy: a double-edged sword. J Clin Invest 104: 223–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S et al. (2009). Mutant p53 drives invasion by promoting integrin recycling. Cell 139: 1327–1341.

    Article  PubMed  Google Scholar 

  • Nakamura S, Roth JA, Mukhopadhyay T . (2000). Multiple lysine mutations in the C-terminal domain of p53 interfere with MDM2-dependent protein degradation and ubiquitination. Mol Cell Biol 20: 9391–9398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson MH, Stein DA, Kroeker AD, Hatlevig SA, Iversen PL, Moulton HM . (2005). Arginine-rich peptide conjugation to morpholino oligomers: Effects on antisense activity and specificity. Bioconjug Chem 16: 959–966.

    Article  CAS  PubMed  Google Scholar 

  • O'Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M et al. (1997). Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res 57: 4285–4300.

    CAS  PubMed  Google Scholar 

  • Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. (2004). Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119: 847–860.

    Article  CAS  PubMed  Google Scholar 

  • Ray PS, Grover R, Das S . (2006). Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep 7: 404–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez MS, Desterro JM, Lain S, Lane DP, Hay RT . (2000). Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol Cell Biol 20: 8458–8467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rovinski B, Munroe D, Peacock J, Mowat M, Bernstein A, Benchimol S . (1987). Deletion of 5′-coding sequences of the cellular p53 gene in mouse erythroleukemia: a novel mechanism of oncogene regulation. Mol Cell Biol 7: 847–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stambolsky P, Tabach Y, Fontemaggi G, Weisz L, Maor-Aloni R, Sigfried Z et al. (2010). Modulation of the vitamin D3 response by cancer-associated mutant p53. Cancer Cell 17: 273–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summerton J, Weller D . (1997). Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7: 187–195.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Prives C . (2009). Blinded by the light: the growing complexity of p53. Cell 137: 413–431.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Curtis JE, Minden MD, McCulloch EA . (1989). Expression of a retinoic acid receptor gene in myeloid leukemia cells. Leukemia 3: 264–269.

    CAS  PubMed  Google Scholar 

  • Wu RP, Youngblood DS, Hassinger JN, Lovejoy CE, Nelson MH, Iversen PL et al. (2007). Cell-penetrating peptides as transporters for morpholino oligomers: effects of amino acid composition on intracellular delivery and cytotoxicity. Nucleic Acids Res 35: 5182–5191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Stephen CW, Luciani MG, Fahraeus R . (2002). p53 stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol 4: 462–467.

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Zhou W, Jiang J, Chen X . (1998). Identification of a novel p53 functional domain that is necessary for mediating apoptosis. J Biol Chem 273: 13030–13036.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Eleos Inc to SB. SB is supported by a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Benchimol.

Ethics declarations

Competing interests

SB is a member of the scientific advisory board of Eleos Inc. LJS is the founder and CSO of Eleos Inc. PLI is a full-time employee of AVI Biopharma Inc.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Lin, Y., Xuan, W. et al. Inhibition of p53 expression by peptide-conjugated phosphorodiamidate morpholino oligomers sensitizes human cancer cells to chemotherapeutic drugs. Oncogene 31, 1024–1033 (2012). https://doi.org/10.1038/onc.2011.300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.300

Keywords

This article is cited by

Search

Quick links