Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Molecular basis of a novel oncogenic mutation in GNAO1

Abstract

Heterotrimeric G proteins are molecular switches that control signal transduction, and their dysregulation can promote oncogenesis. Somatic mutations in GNAS, GNAI2 and GNAQ genes induce oncogenesis by rendering Gα subunits constitutively activated. Recently the first somatic mutation, arginine243 → histidine (R243H) in the GNAO1 (Gαo) gene was identified in breast carcinomas and shown to promote oncogenic transformation when introduced into cells. Here, we provide the molecular basis for the oncogenic properties of the Gαo R243H mutant. Using limited proteolysis assays, nucleotide-binding assays, and single-turnover and steady-state GTPase assays, we demonstrate that the oncogenic R234H mutation renders Gαo constitutively active by accelerating the rate of nucleotide exchange; however, this mutation does not affect Gαo's ability to become deactivated by GTPase-activating proteins (GAPs) or by its intrinsic GTPase activity. This mechanism differs from that of previously reported oncogenic mutations that impair GTPase activity and GAP sensitivity without affecting nucleotide exchange. The constitutively active Gαo R243H mutant also enhances Src-STAT3 signaling in NIH-3T3 cells, a pathway previously shown to be directly triggered by active Gαo proteins to promote cellular transformation. Based on structural analyses, we propose that the enhanced rate of nucleotide exchange in Gαo R243H results from loss of the highly conserved electrostatic interaction of R243 with E43, located in the in the P-loop that represents the binding site for the α- and β-phosphates of the nucleotide. We conclude that the novel R234H mutation imparts oncogenic properties to Gαo by accelerating nucleotide exchange and rendering it constitutively active, thereby enhancing signaling pathways, for example, src-STAT3, responsible for neoplastic transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Barren B, Natochin M, Artemyev NO . (2006). Mutation R238E in transducin-alpha yields a GTPase and effector-deficient, but not dominant-negative, G-protein alpha-subunit. Mol Vis 12: 492–498.

    CAS  PubMed  Google Scholar 

  • Berman DM, Wilkie TM, Gilman AG . (1996). GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Cell 86: 445–452.

    Article  CAS  PubMed  Google Scholar 

  • Bourne HR . (1997). G proteins. The arginine finger strikes again. Nature 389: 673–674.

    Article  CAS  PubMed  Google Scholar 

  • Casey PJ, Fong HK, Simon MI, Gilman AG . (1990). Gz, a guanine nucleotide-binding protein with unique biochemical properties. J Biol Chem 265: 2383–2390.

    CAS  PubMed  Google Scholar 

  • Coleman DE, Berghuis AM, Lee E, Linder ME, Gilman AG, Sprang SR . (1994). Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science 265: 1405–1412.

    Article  CAS  PubMed  Google Scholar 

  • De Vries L, Mousli M, Wurmser A, Farquhar MG . (1995). GAIP, a protein that specifically interacts with the trimeric G protein G alpha i3, is a member of a protein family with a highly conserved core domain. Proc Natl Acad Sci USA 92: 11916–11920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi M, Iwasaki K . (2002). Regulation of retrograde signaling at neuromuscular junctions by the novel C2 domain protein AEX-1. Neuron 33: 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Downward J . (2003). Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3: 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Farfel Z, Bourne HR, Iiri T . (1999). The expanding spectrum of G protein diseases. N Engl J Med 340: 1012–1020.

    Article  CAS  PubMed  Google Scholar 

  • Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J et al. (2008). The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum Genet Chapter 10: Unit 10.11.

    CAS  PubMed  Google Scholar 

  • Garcia-Marcos M, Ghosh P, Farquhar MG . (2009). GIV is a nonreceptor GEF for G alpha i with a unique motif that regulates Akt signaling. Proc Natl Acad Sci USA 106: 3178–3183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Marcos M, Ghosh P, Ear J, Farquhar MG . (2010). A structural determinant that renders G alpha(i) sensitive to activation by GIV/girdin is required to promote cell migration. J Biol Chem 285: 12765–12777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh P, Beas AO, Bornheimer SJ, Garcia-Marcos M, Forry EP, Johannson C et al. (2010). A G{alpha}i-GIV molecular complex binds epidermal growth factor receptor and determines whether cells migrate or proliferate. Mol Biol Cell 21: 2338–2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh P, Garcia-Marcos M, Bornheimer SJ, Farquhar MG . (2008). Activation of Galphai3 triggers cell migration via regulation of GIV. J Cell Biol 182: 381–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grishina G, Berlot CH . (1998). Mutations at the domain interface of GSalpha impair receptor-mediated activation by altering receptor and guanine nucleotide binding. J Biol Chem 273: 15053–15060.

    Article  CAS  PubMed  Google Scholar 

  • Higashijima T, Ferguson KM, Smigel MD, Gilman AG . (1987). The effect of GTP and Mg2+ on the GTPase activity and the fluorescent properties of Go. J Biol Chem 262: 757–761.

    CAS  PubMed  Google Scholar 

  • Iiri T, Farfel Z, Bourne HR . (1998). G-protein diseases furnish a model for the turn-on switch. Nature 394: 35–38.

    Article  CAS  PubMed  Google Scholar 

  • Johnston CA, Taylor JP, Gao Y, Kimple AJ, Grigston JC, Chen JG et al. (2007). GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. Proc Natl Acad Sci USA 104: 17317–17322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM et al. (2010). Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466: 869–873.

    Article  CAS  PubMed  Google Scholar 

  • Kleuss C, Raw AS, Lee E, Sprang SR, Gilman AG . (1994). Mechanism of GTP hydrolysis by G-protein alpha subunits. Proc Natl Acad Sci USA 91: 9828–9831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroll SD, Chen J, De Vivo M, Carty DJ, Buku A, Premont RT et al. (1992). The Q205LGo-alpha subunit expressed in NIH-3T3 cells induces transformation. J Biol Chem 267: 23183–23188.

    CAS  PubMed  Google Scholar 

  • Lamba S, Felicioni L, Buttitta F, Bleeker FE, Malatesta S, Corbo V et al. (2009). Mutational profile of GNAQQ209 in human tumors. PLoS One 4: e6833.

    Article  PubMed  PubMed Central  Google Scholar 

  • Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L . (1989). GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340: 692–696.

    Article  CAS  PubMed  Google Scholar 

  • Linder ME, Ewald DA, Miller RJ, Gilman AG . (1990). Purification and characterization of Go alpha and three types of Gi alpha after expression in Escherichia coli. J Biol Chem 265: 8243–8251.

    CAS  PubMed  Google Scholar 

  • Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H et al. (1990). Two G protein oncogenes in human endocrine tumors. Science 249: 655–659.

    Article  CAS  PubMed  Google Scholar 

  • Makita N, Sato J, Rondard P, Fukamachi H, Yuasa Y, Aldred MA et al. (2007). Human G(salpha) mutant causes pseudohypoparathyroidism type Ia/neonatal diarrhea, a potential cell-specific role of the palmitoylation cycle. Proc Natl Acad Sci USA 104: 17424–17429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinissen MJ, Gutkind JS . (2001). G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22: 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay S, Ross EM . (2002). Quench-flow kinetic measurement of individual reactions of G-protein-catalyzed GTPase cycle. Methods Enzymol 344: 350–369.

    Article  CAS  PubMed  Google Scholar 

  • Pereira R, Cerione RA . (2005). A switch 3 point mutation in the alpha subunit of transducin yields a unique dominant-negative inhibitor. J Biol Chem 280: 35696–35703.

    Article  CAS  PubMed  Google Scholar 

  • Radhika V, Dhanasekaran N . (2001). Transforming G proteins. Oncogene 20: 1607–1614.

    Article  CAS  PubMed  Google Scholar 

  • Ram PT, Horvath CM, Iyengar R . (2000). Stat3-mediated transformation of NIH-3T3 cells by the constitutively active Q205L Galphao protein. Science 287: 142–144.

    Article  CAS  PubMed  Google Scholar 

  • Sprang SR . (1997). G protein mechanisms: insights from structural analysis. Annu Rev Biochem 66: 639–678.

    Article  CAS  PubMed  Google Scholar 

  • Sternweis PC, Robishaw JD . (1984). Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J Biol Chem 259: 13806–13813.

    CAS  PubMed  Google Scholar 

  • Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O'Brien JM et al. (2009). Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457: 599–602.

    Article  CAS  PubMed  Google Scholar 

  • Vara Prasad MV, Shore SK, Dhanasekaran N . (1994). Activated mutant of G alpha 13 induces Egr-1, c-fos, and transformation in NIH 3T3 cells. Oncogene 9: 2425–2429.

    CAS  PubMed  Google Scholar 

  • Voyno-Yasenetskaya TA, Pace AM, Bourne HR . (1994). Mutant alpha subunits of G12 and G13 proteins induce neoplastic transformation of Rat-1 fibroblasts. Oncogene 9: 2559–2565.

    CAS  PubMed  Google Scholar 

  • Warner DR, Weinstein LS . (1999). A mutation in the heterotrimeric stimulatory guanine nucleotide binding protein alpha-subunit with impaired receptor-mediated activation because of elevated GTPase activity. Proc Natl Acad Sci USA 96: 4268–4272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong YH, Chan JS, Yung LY, Bourne HR . (1995). Mutant alpha subunit of Gz transforms Swiss 3T3 cells. Oncogene 10: 1927–1933.

    CAS  PubMed  Google Scholar 

  • Xu N, Bradley L, Ambdukar I, Gutkind JS . (1993). A mutant alpha subunit of G12 potentiates the eicosanoid pathway and is highly oncogenic in NIH 3T3 cells. Proc Natl Acad Sci USA 90: 6741–6745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu N, Voyno-Yasenetskaya T, Gutkind JS . (1994). Potent transforming activity of the G13 alpha subunit defines a novel family of oncogenes. Biochem Biophys Res Commun 201: 603–609.

    Article  CAS  PubMed  Google Scholar 

  • Zurita AR, Birnbaumer L . (2008). The same mutation in Gsalpha and transducin alpha reveals behavioral differences between these highly homologous G protein alpha-subunits. Proc Natl Acad Sci USA 105: 2363–2368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by NIH grants CA100768 and DKI7780 (to MGF). MGM was supported by a Susan G Komen postdoctoral fellowship KG080079 and PG by Burroughs Wellcome Fund and Research Scholar Award (American Gastroenterology Association FDN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Garcia-Marcos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Marcos, M., Ghosh, P. & Farquhar, M. Molecular basis of a novel oncogenic mutation in GNAO1. Oncogene 30, 2691–2696 (2011). https://doi.org/10.1038/onc.2010.645

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.645

Keywords

This article is cited by

Search

Quick links