Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

High-level expression of Mastermind-like 2 contributes to aberrant activation of the NOTCH signaling pathway in human lymphomas

Abstract

Inappropriate activation of the NOTCH signaling pathway, for example, by activating mutations, contributes to the pathogenesis of various human malignancies. Here, we demonstrate that aberrant expression of an essential NOTCH coactivator of the Mastermind-like (MAML) family provides an alternative mechanism to activate NOTCH signaling in human lymphoma cells. We detected high-level MAML2 expression in several B cell-derived lymphoma types, including classical Hodgkin lymphoma (cHL) cells, relative to normal B cells. Inhibition of MAML-protein activity by a dominant negative form of MAML or by small hairpin RNAs targeting MAML2 in cHL cells resulted in downregulation of the NOTCH target genes HES7 and HEY1, which we identified as overexpressed in cHL cells, and in reduced proliferation. Furthermore, a NOTCH gene-expression signature in cHL cells confirmed their cell-autonomous NOTCH activity. Finally, in line with the essential role of MAML proteins for assembly and activity of the NOTCH transcriptional complex (NTC), we show that MAML-derived small-peptide constructs block NOTCH activity and disrupt NTC formation in vitro. These data strongly suggest direct targeting of the NTC as treatment strategy for NOTCH-dependent malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Bessho Y, Miyoshi G, Sakata R, Kageyama R . (2001). Hes7: a bHLH-type repressor gene regulated by Notch and expressed in the presomitic mesoderm. Genes Cells 6: 175–185.

    Article  CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R . (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550–553.

    Article  CAS  PubMed  Google Scholar 

  • Del Bianco C, Aster JC, Blacklow SC . (2008). Mutational and energetic studies of Notch 1 transcription complexes. J Mol Biol 376: 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. (1991). TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66: 649–661.

    Article  CAS  PubMed  Google Scholar 

  • Fryer CJ, Lamar E, Turbachova I, Kintner C, Jones KA . (2002). Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev 16: 1397–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabher C, von Boehmer H, Look AT . (2006). Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 6: 347–359.

    Article  CAS  PubMed  Google Scholar 

  • Iso T, Kedes L, Hamamori Y . (2003). HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194: 237–255.

    Article  CAS  PubMed  Google Scholar 

  • Janz M, Hummel M, Truss M, Wollert-Wulf B, Mathas S, Jöhrens K et al. (2006). Classical Hodgkin lymphoma is characterized by high constitutive expression of activating transcription factor 3 (ATF3), which promotes viability of Hodgkin/Reed-Sternberg cells. Blood 107: 2536–2539.

    Article  CAS  PubMed  Google Scholar 

  • Jeffries S, Robbins DJ, Capobianco AJ . (2002). Characterization of a high-molecular-weight Notch complex in the nucleus of Notch(ic)-transformed RKE cells and in a human T-cell leukemia cell line. Mol Cell Biol 22: 3927–3941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin B, Shen H, Lin S, Li JL, Chen Z, Griffin JD et al. (2010). The mastermind-like 1 (MAML1) co-activator regulates constitutive NF-kappaB signaling and cell survival. J Biol Chem 285: 14356–14365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jundt F, Acikgoez O, Kwon SH, Schwarzer R, Anagnostopoulos I, Wiesner B et al. (2008). Aberrant expression of Notch1 interferes with the B-lymphoid phenotype of neoplastic B cells in classical Hodgkin lymphoma. Leukemia 22: 1587–1594.

    Article  CAS  PubMed  Google Scholar 

  • Jundt F, Anagnostopoulos I, Förster R, Mathas S, Stein H, Dörken B . (2002). Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 99: 3398–3403.

    Article  CAS  PubMed  Google Scholar 

  • Jundt F, Pröbsting KS, Anagnostopoulos I, Muehlinghaus G, Chatterjee M, Mathas S et al. (2004). Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells. Blood 103: 3511–3515.

    Article  CAS  PubMed  Google Scholar 

  • Kapp U, Yeh WC, Patterson B, Elia AJ, Kagi D, Ho A et al. (1999). Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. J Exp Med 189: 1939–1946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch U, Radtke F . (2007). Notch and cancer: a double-edged sword. Cell Mol Life Sci 64: 2746–2762.

    Article  CAS  PubMed  Google Scholar 

  • Kopan R, Ilagan MX . (2009). The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137: 216–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Kumano K, Nakazaki K, Sanada M, Matsumoto A, Yamamoto G et al. (2009). Gain-of-function mutations and copy number increases of Notch2 in diffuse large B-cell lymphoma. Cancer Sci 100: 920–926.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Gounari F, Protopopov A, Khazaie K, von Boehmer H . (2008). Oncogenesis of T-ALL and nonmalignant consequences of overexpressing intracellular NOTCH1. J Exp Med 205: 2851–2861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lietz A, Janz M, Sigvardsson M, Jundt F, Dörken B, Mathas S . (2007). Loss of bHLH transcription factor E2A activity in primary effusion lymphoma confers resistance to apoptosis. Br J Haematol 137: 342–348.

    Article  CAS  PubMed  Google Scholar 

  • Lin SE, Oyama T, Nagase T, Harigaya K, Kitagawa M . (2002). Identification of new human mastermind proteins defines a family that consists of positive regulators for notch signaling. J Biol Chem 277: 50612–50620.

    Article  CAS  PubMed  Google Scholar 

  • Lubman OY, Ilagan MX, Kopan R, Barrick D . (2007). Quantitative dissection of the Notch:CSL interaction: insights into the Notch-mediated transcriptional switch. J Mol Biol 365: 577–589.

    Article  CAS  PubMed  Google Scholar 

  • Maillard I, Weng AP, Carpenter AC, Rodriguez CG, Sai H, Xu L et al. (2004). Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 104: 1696–1702.

    Article  CAS  PubMed  Google Scholar 

  • Mathas S, Janz M, Hummel F, Hummel M, Wollert-Wulf B, Lusatis S et al. (2006). Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol 7: 207–215.

    Article  CAS  PubMed  Google Scholar 

  • McElhinny AS, Li JL, Wu L . (2008). Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways. Oncogene 27: 5138–5147.

    Article  CAS  PubMed  Google Scholar 

  • Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC et al. (2009). Direct inhibition of the NOTCH transcription factor complex. Nature 462: 182–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murre C . (2005). Helix-loop-helix proteins and lymphocyte development. Nat Immunol 6: 1079–1086.

    Article  CAS  PubMed  Google Scholar 

  • Nam Y, Sliz P, Song L, Aster JC, Blacklow SC . (2006). Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124: 973–983.

    Article  CAS  PubMed  Google Scholar 

  • Nam Y, Weng AP, Aster JC, Blacklow SC . (2003). Structural requirements for assembly of the CSL. intracellular Notch1. Mastermind Master-like 1 transcriptional activation complex. J Biol Che 278: 21232–21239.

    Article  CAS  Google Scholar 

  • Nie L, Xu M, Vladimirova A, Sun XH . (2003). Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J 22: 5780–5792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C et al. (2007). FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 204: 1813–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyama T, Harigaya K, Muradil A, Hozumi K, Habu S, Oguro H et al. (2007). Mastermind-1 is required for Notch signal-dependent steps in lymphocyte development in vivo. Proc Natl Acad Sci USA 104: 9764–9769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosati E, Sabatini R, Rampino G, Tabilio A, Di Ianni M, Fettucciari K et al. (2009). Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 113: 856–865.

    Article  CAS  PubMed  Google Scholar 

  • Stanelle J, Döring C, Hansmann ML, Küppers R . (2010). Mechanisms of aberrant GATA-3 expression in classical Hodgkin lymphoma and its consequences for the cytokine profile of Hodgkin and Reed/Sternberg cells. Blood (doi:10.1182/blood2010-01-265827).

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonon G, Modi S, Wu L, Kubo A, Coxon AB, Komiya T et al. (2003). t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat Genet 33: 208–213.

    Article  CAS  PubMed  Google Scholar 

  • Weng AP, Ferrando AA, Lee W, Morris IV JP, Silverman LB, Sanchez-Irizarry C et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  • Weng AP, Nam Y, Wolfe MS, Pear WS, Griffin JD, Blacklow SC et al. (2003). Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol 23: 655–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson JJ, Kovall RA . (2006). Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell 124: 985–996.

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD . (2000). MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet 26: 484–489.

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Maillard I, Nakamura M, Pear WS, Griffin JD . (2007). The transcriptional coactivator Maml1 is required for Notch2-mediated marginal zone B-cell development. Blood 110: 3618–3623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Sun T, Kobayashi K, Gao P, Griffin JD . (2002). Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Mol Cell Biol 22: 7688–7700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Caroline Gärtner (Berlin), Melanie Manzke (Berlin) and Simone Kressmann (Berlin) for outstanding technical assistance, and Peter Rahn (Berlin) for cell sorting. We thank Raphael Kopan (Washington) for the Hes1-pGL2 reporter construct, Lizi Wu (Gainesville, Florida) for the MAML3 expression construct, Karin Zimmermann (Berlin) and Ulf Leser (Berlin) for helpful suggestions in regard to gene set analysis, and Ariane Buchal and Benedikt Sedlmaier (both Berlin, Germany) for providing human tonsil material. This work was supported in part by grants from the Deutsche Forschungsgemeinschaft, the Berliner Krebsgesellschaft and the Wilhelm Sander-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Mathas.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köchert, K., Ullrich, K., Kreher, S. et al. High-level expression of Mastermind-like 2 contributes to aberrant activation of the NOTCH signaling pathway in human lymphomas. Oncogene 30, 1831–1840 (2011). https://doi.org/10.1038/onc.2010.544

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.544

Keywords

This article is cited by

Search

Quick links