Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Myc heterozygosity attenuates the phenotypes of APC deficiency in the small intestine

Abstract

The adenomatous polyposis coli (APC) gene encodes APC tumour suppressor protein, germline mutation of which causes familial adenomatous polyposis, an autosomal intestinal cancer syndrome. We have previously demonstrated that the proto-oncogene c-Myc is essential for all the phenotypes that occur after APC loss in the murine small intestine. One caveat to this study is that it was performed in the complete absence of c-Myc. In this study, we show that heterozygosity for Myc reduces the phenotypes of APC loss and Wnt target gene expression and slows tumourigenesis. Crucially, the levels of Myc are twofold higher than wild-type levels showing that the level of Myc induced by Wnt signalling is absolutely vital for the fate of APC-deficient cells. Taken together, this suggests that c-Myc inhibition may be a viable chemoprevention strategy for colorectal cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Andreu P, Colnot S, Godard C, Gad S, Chafey P, Niwa-Kawakita M et al. (2005). Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development 132: 1443–1451.

    Article  CAS  PubMed  Google Scholar 

  • Baena E, Gandarillas A, Vallespinos M, Zanet J, Bachs O, Redondo C et al. (2005). c-Myc regulates cell size and ploidy but is not essential for postnatal proliferation in liver. Proc Natl Acad Sci USA 102: 7286–7291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienz M, Clevers H . (2000). Linking colorectal cancer to Wnt signaling. Cell 103: 311–320.

    Article  CAS  PubMed  Google Scholar 

  • Bommer GT, Fearon ER . (2007). Role of c-Myc in Apc mutant intestinal phenotype: case closed or time for a new beginning? Cancer Cell 11: 391–394.

    Article  CAS  PubMed  Google Scholar 

  • Ciznadija D, Tothill R, Waterman ML, Zhao L, Huynh D, Yu RM et al. (2009). Intestinal adenoma formation and MYC activation are regulated by cooperation between MYB and Wnt signaling. Cell Death Differ 16: 1530–1538.

    Article  CAS  PubMed  Google Scholar 

  • Finch AJ, Soucek L, Junttila MR, Swigart LB, Evan GI . (2009). Acute over-expression of Myc in intestinal epithelium recapitulates some but not all the changes elicited. Mol Cell Biol 29: 5306–5315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregorieff A, Clevers H . (2005). Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 19: 877–890.

    Article  CAS  PubMed  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al. (1998). Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  • Ignatenko NA, Holubec H, Besselsen DG, Blohm-Mangone KA, Padilla-Torres JL, Nagle RB et al. (2006). Role of c-Myc in intestinal tumorigenesis of the ApcMin/+ mouse. Cancer Biol Ther 5: 1658–1664.

    Article  CAS  PubMed  Google Scholar 

  • Jubb AM, Chalasani S, Frantz GD, Smits R, Grabsch HI, Kavi V et al. (2006). Achaete-scute like 2 (ascl2) is a target of Wnt signalling and is upregulated in intestinal neoplasia. Oncogene 25: 3445–3457.

    Article  CAS  PubMed  Google Scholar 

  • Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB et al. (1991). Identification of FAP locus genes from chromosome 5q21. Science 253: 661–665.

    Article  CAS  PubMed  Google Scholar 

  • Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275: 1784–1787.

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K, Bui DA et al. (2008). Distinct thresholds govern Myc's biological output in vivo. Cancer Cell 14: 447–457.

    Article  CAS  PubMed  Google Scholar 

  • Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H et al. (2009). The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet 41: 882–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sansom OJ, Meniel V, Wilkins JA, Cole AM, Oien KA, Marsh V et al. (2006). Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc Natl Acad Sci USA 103: 14122–14127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA, Reed KR et al. (2007). Myc deletion rescues Apc deficiency in the small intestine. Nature 446: 676–679.

    Article  CAS  PubMed  Google Scholar 

  • Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP et al. (2004). Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 18: 1385–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shchors K, Shchors E, Rostker F, Lawlor ER, Brown-Swigart L, Evan GI . (2006). The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta. Genes Dev 20: 2527–2538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata H, Toyama K, Shioya H, Ito M, Hirota M, Hasegawa S et al. (1997). Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278: 120–123.

    Article  CAS  PubMed  Google Scholar 

  • Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM et al. (2008). Modelling Myc inhibition as a cancer therapy. Nature 455: 679–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanharanta S, Kivioja T et al. (2009). The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet 41: 885–890.

    Article  CAS  PubMed  Google Scholar 

  • van der Flier LG, van Gijn ME, Hatzis P, Kujala P, Haegebarth A, Stange DE et al. (2009). Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136: 903–912.

    Article  CAS  PubMed  Google Scholar 

  • Wilkins JA, Sansom OJ . (2008). C-Myc is a critical mediator of the phenotypes of Apc loss in the intestine. Cancer Res 68: 4963–4966.

    Article  CAS  PubMed  Google Scholar 

  • Yekkala K, Baudino TA . (2007). Inhibition of intestinal polyposis with reduced angiogenesis in ApcMin/+ mice due to decreases in c-Myc expression. Mol Cancer Res 5: 1296–1303.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O J Sansom.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Athineos, D., Sansom, O. Myc heterozygosity attenuates the phenotypes of APC deficiency in the small intestine. Oncogene 29, 2585–2590 (2010). https://doi.org/10.1038/onc.2010.5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.5

Keywords

This article is cited by

Search

Quick links