Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Srg3, a mouse homolog of BAF155, is a novel p53 target and acts as a tumor suppressor by modulating p21WAF1/CIP1 expression

Abstract

Some subunits of the SWI/SNF complex function as tumor suppressors. However, underlying mechanisms are still incompletely defined. Here, we show that Srg3, a mouse homolog of BAF155 that function as a core subunit of this complex, suppresses tumorigenesis in vivo. DNA damage signals promoted Srg3 degradation by inducing p53. Deficiency of Srg3 promoted G1 cell-cycle arrest, but antagonized apoptotic response to DNA damage by robustly inducing p53 and p21 proteins. Srg3 heterozygous mice were prone to sarcoma formation, which was further enhanced by haploinsufficiency of p53. These tumors highly expressed p53 and p21 but lacked Srg3 expression. Our results establish a novel function of Srg3 in tumor suppression and provide insights into genetic pathways dictating tumor suppression by the SWI/SNF complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Betz BL, Strobeck MW, Reisman DN, Knudsen ES, Weissman BE . (2002). Re-expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G1 arrest associated with induction of p16ink4a and activation of RB. Oncogene 21: 5193–5203.

    Article  CAS  PubMed  Google Scholar 

  • Biegel JA, Zhou JY, Rorke LB, Stenstrom C, Wainwright LM, Fogelgren B . (1999). Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 59: 74–79.

    CAS  PubMed  Google Scholar 

  • Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A et al. (2000). A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 6: 1287–1295.

    Article  CAS  PubMed  Google Scholar 

  • Bultman SJ, Herschkowitz JI, Godfrey V, Gebuhr TC, Yaniv M, Perou CM et al. (2008). Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene 27: 460–468.

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Chai B, Huang J, Cairns BR, Laurent BC . (2005). Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev 19: 1656–1661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan TA, Hwang PM, Hermeking H, Kinzler KW, Vogelstein B . (2000). Cooperative effects of genes controlling the G(2)/M checkpoint. Genes Dev 14: 1584–1588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Archer TK . (2005). Regulating SWI/SNF subunit levels via protein-protein interactions and proteasomal degradation: BAF155 and BAF170 limit expression of BAF57. Mol Cell Biol 25: 9016–9027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De la Cueva E, Garcia-Cao I, Herranz M, Lopez P, Garcia-Palencia P, Flores JM et al. (2006). Tumorigenic activity of p21Waf1/Cip1 in thymic lymphoma. Oncogene 25: 4128–4132.

    Article  CAS  PubMed  Google Scholar 

  • de la Serna IL, Ohkawa Y, Imbalzano AN . (2006). Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 7: 461–473.

    Article  CAS  PubMed  Google Scholar 

  • Decristofaro MF, Betz BL, Rorie CJ, Reisman DN, Wang W, Weissman BE . (2001). Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies. J Cell Physiol 186: 136–145.

    Article  CAS  PubMed  Google Scholar 

  • Doan DN, Veal TM, Yan Z, Wang W, Jones SN, Imbalzano AN . (2004). Loss of the INI1 tumor suppressor does not impair the expression of multiple BRG1-dependent genes or the assembly of SWI/SNF enzymes. Oncogene 23: 3462–3473.

    Article  CAS  PubMed  Google Scholar 

  • Dunaief JL, Strober BE, Guha S, Khavari PA, Alin K, Luban J et al. (1994). The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79: 119–130.

    Article  CAS  PubMed  Google Scholar 

  • Fiucci G, Beaucourt S, Duflaut D, Lespagnol A, Stumptner-Cuvelette P, Geant A et al. (2004). Siah-1b is a direct transcriptional target of p53: identification of the functional p53 responsive element in the siah-1b promoter. Proc Natl Acad Sci USA 101: 3510–3515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gartel AL, Tyner AL . (2002). The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 1: 639–649.

    CAS  PubMed  Google Scholar 

  • Glaros S, Cirrincione GM, Palanca A, Metzger D, Reisman D . (2008). Targeted knockout of BRG1 potentiates lung cancer development. Cancer Res 68: 3689–3696.

    Article  CAS  PubMed  Google Scholar 

  • Guidi CJ, Sands AT, Zambrowicz BP, Turner TK, Demers DA, Webster W et al. (2001). Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol Cell Biol 21: 3598–3603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han D, Jeon S, Sohn DH, Lee C, Ahn S, Kim WK et al. (2008). SRG3, a core component of mouse SWI/SNF complex, is essential for extra-embryonic vascular development. Dev Biol 315: 136–146.

    Article  CAS  PubMed  Google Scholar 

  • Han S, Choi H, Ko MG, Choi YI, Sohn DH, Kim JK et al. (2001). Peripheral T cells become sensitive to glucocorticoid- and stress-induced apoptosis in transgenic mice overexpressing SRG3. J Immunol 167: 805–810.

    Article  CAS  PubMed  Google Scholar 

  • Hendricks KB, Shanahan F, Lees E . (2004). Role for BRG1 in cell cycle control and tumor suppression. Mol Cell Biol 24: 362–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu G, Fearon ER . (1999). Siah-1 N-terminal RING domain is required for proteolysis function, and C-terminal sequences regulate oligomerization and binding to target proteins. Mol Cell Biol 19: 724–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isakoff MS, Sansam CG, Tamayo P, Subramanian A, Evans JA, Fillmore CM et al. (2005). Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation. Proc Natl Acad Sci USA 102: 17745–17750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneuchi M, Yamashita T, Shindoh M, Segawa K, Takahashi S, Furuta I et al. (1999). Induction of apoptosis by the p53-273L (Arg --> Leu) mutant in HSC3 cells without transactivation of p21Waf1/Cip1/Sdi1 and bax. Mol Carcinog 26: 44–52.

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Huh SO, Choi H, Lee KS, Shin D, Lee C et al. (2001). Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development. Mol Cell Biol 21: 7787–7795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klochendler-Yeivin A, Fiette L, Barra J, Muchardt C, Babinet C, Yaniv M . (2000). The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep 1: 500–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klochendler-Yeivin A, Picarsky E, Yaniv M . (2006). Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Mol Cell Biol 26: 2661–2674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Stevens J, Rote CA, Yost HJ, Hu Y, Neufeld KL et al. (2001). Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell 7: 927–936.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Caballero J, Flores JM, Garcia-Palencia P, Serrano M . (2001). Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. Cancer Res 61: 6234–6238.

    CAS  PubMed  Google Scholar 

  • McKenna ES, Sansam CG, Cho YJ, Greulich H, Evans JA, Thom CS et al. (2008). Loss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability. Mol Cell Biol 28: 6223–6233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moshkin YM, Mohrmann L, van Ijcken WF, Verrijzer CP . (2007). Functional differentiation of SWI/SNF remodelers in transcription and cell cycle control. Mol Cell Biol 27: 651–661.

    Article  CAS  PubMed  Google Scholar 

  • Oh J, Sohn DH, Ko M, Chung H, Jeon SH, Seong RH . (2008). BAF60a interacts with p53 to recruit the SWI/SNF complex. J Biol Chem 283: 11924–11934.

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Park EJ, Lee HS, Kim SJ, Hur SK, Imbalzano AN et al. (2006). Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction. EMBO J 25: 3986–3997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phelan ML, Sif S, Narlikar GJ, Kingston RE . (1999). Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell 3: 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Polyak K, Waldman T, He TC, Kinzler KW, Vogelstein B . (1996). Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev 10: 1945–1952.

    Article  CAS  PubMed  Google Scholar 

  • Ring HZ, Vameghi-Meyers V, Wang W, Crabtree GR, Francke U . (1998). Five SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin (SMARC) genes are dispersed in the human genome. Genomics 51: 140–143.

    Article  CAS  PubMed  Google Scholar 

  • Roberts CW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH . (2000). Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci USA 97: 13796–13800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts CW, Leroux MM, Fleming MD, Orkin SH . (2002). Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2: 415–425.

    Article  CAS  PubMed  Google Scholar 

  • Roberts CW, Orkin SH . (2004). The SWI/SNF complex--chromatin and cancer. Nat Rev Cancer 4: 133–142.

    Article  CAS  PubMed  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858–5868.

    Article  CAS  PubMed  Google Scholar 

  • Rothkamm K, Lobrich M . (2003). Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA 100: 5057–5062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW . (2002). Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1: 289–298.

    Article  CAS  PubMed  Google Scholar 

  • Shibue T, Takeda K, Oda E, Tanaka H, Murasawa H, Takaoka A et al. (2003). Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 17: 2233–2238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohn DH, Lee KY, Lee C, Oh J, Chung H, Jeon SH et al. (2007). SRG3 interacts directly with the major components of the SWI/SNF chromatin remodeling complex and protects them from proteasomal degradation. J Biol Chem 282: 10614–10624.

    Article  CAS  PubMed  Google Scholar 

  • Strobeck MW, Knudsen KE, Fribourg AF, DeCristofaro MF, Weissman BE, Imbalzano AN et al. (2000). BRG-1 is required for RB-mediated cell cycle arrest. Proc Natl Acad Sci USA 97: 7748–7753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T et al. (1994). p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78: 703–711.

    Article  CAS  PubMed  Google Scholar 

  • Trouche D, Le Chalony C, Muchardt C, Yaniv M, Kouzarides T . (1997). RB and hbrm cooperate to repress the activation functions of E2F1. Proc Natl Acad Sci USA 94: 11268–11273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R et al. (1998). Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394: 203–206.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH . (2006). Outcomes of p53 activation--spoilt for choice. J Cell Sci 119: 5015–5020.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  • Vries RG, Bezrookove V, Zuijderduijn LM, Kia SK, Houweling A, Oruetxebarria I et al. (2005). Cancer-associated mutations in chromatin remodeler hSNF5 promote chromosomal instability by compromising the mitotic checkpoint. Genes Dev 19: 665–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldman T, Lengauer C, Kinzler KW, Vogelstein B . (1996). Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381: 713–716.

    Article  CAS  PubMed  Google Scholar 

  • Wang YA, Elson A, Leder P . (1997). Loss of p21 increases sensitivity to ionizing radiation and delays the onset of lymphoma in atm-deficient mice. Proc Natl Acad Sci USA 94: 14590–14595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong AK, Shanahan F, Chen Y, Lian L, Ha P, Hendricks K et al. (2000). BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Res 60: 6171–6177.

    CAS  PubMed  Google Scholar 

  • Yang X, Zaurin R, Beato M, Peterson CL . (2007). Swi3p controls SWI/SNF assembly and ATP-dependent H2A-H2B displacement. Nat Struct Mol Biol 14: 540–547.

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZK, Davies KP, Allen J, Zhu L, Pestell RG, Zagzag D et al. (2002). Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5. Mol Cell Biol 22: 5975–5988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Research Foundation of Korea (NRF), funded by Ministry of Education, Science and Technology, in part through the Research Center for Functional Cellulomics and in part through the Priority Research Centers Program (2009-0094022). JA, MK, JK, HY and CL were supported by the BK21 program from MEST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R H Seong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, J., Ko, M., Lee, C. et al. Srg3, a mouse homolog of BAF155, is a novel p53 target and acts as a tumor suppressor by modulating p21WAF1/CIP1 expression. Oncogene 30, 445–456 (2011). https://doi.org/10.1038/onc.2010.424

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.424

Keywords

This article is cited by

Search

Quick links