Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

AP1 factor inactivation in the suprabasal epidermis causes increased epidermal hyperproliferation and hyperkeratosis but reduced carcinogen-dependent tumor formation

Abstract

Activator protein one (AP1) (jun/fos) factors comprise a family of transcriptional regulators (c-jun, junB, junD, c-fos, FosB, Fra-1 and Fra-2) that are key controllers of epidermal keratinocyte survival and differentiation, and are important drivers of cancer development. Understanding the role of these factors in epidermis is complicated by the fact that each member is expressed in defined cell layers during epidermal differentiation, and because AP1 factors regulate competing processes (that is, proliferation, apoptosis and differentiation). We have proposed that AP1 factors function differently in basal versus suprabasal epidermis. To test this, we inactivated suprabasal AP1 factor function in mouse epidermis by targeted expression of dominant-negative c-jun (TAM67), which inactivates function of all AP1 factors. This produces increased basal keratinocyte proliferation, delayed differentiation and extensive hyperkeratosis. These findings contrast with previous studies showing that basal layer AP1 factor inactivation does not perturb resting epidermis. It is interesting that in spite of extensive keratinocyte hyperproliferation, susceptibility to carcinogen-dependent tumor induction is markedly attenuated. These novel observations strongly suggest that AP1 factors have distinct roles in the basal versus suprabasal epidermis, confirm that AP1 factor function is required for normal terminal differentiation, and suggest that AP1 factors have a different role in normal epidermis versus cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

TRE or TetO:

tetracycline response element

TAM67:

dominant-negative c-jun

K1:

keratin 1

K14:

keratin 14

K5:

keratin 5

rTA:

tetracycline-responsive activator protein

TPA:

12-O-tetradecanoylphorbol-13-acetate

DMBA:

7, 12-dimethylbenzanthracene

References

  • Adhikary G, Crish J, Lass J, Eckert RL . (2004). Regulation of involucrin expression in normal human corneal epithelial cells: a role for activator protein one. Invest Ophthalmol Vis Sci 45: 1080–1087.

    Article  PubMed  Google Scholar 

  • Angel P, Szabowski A, Schorpp-Kistner M . (2001). Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 20: 2413–2423.

    CAS  PubMed  Google Scholar 

  • Bakiri L, Lallemand D, Bossy-Wetzel E, Yaniv M . (2000). Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression. EMBO J 19: 2056–2068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banks EB, Crish JF, Welter JF, Eckert RL . (1998). Characterization of human involucrin promoter distal regulatory region transcriptional activator elements-a role for Sp1 and AP1 binding sites. Biochem J 331 (Part 1): 61–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bickenbach JR, Dunnwald M . (2000). Epidermal stem cells: characteristics and use in tissue engineering and gene therapy. Adv Dermatol 16: 159–183.

    CAS  PubMed  Google Scholar 

  • Brown PH, Chen TK, Birrer MJ . (1994). Mechanism of action of a dominant-negative mutant of c-Jun. Oncogene 9: 791–799.

    CAS  PubMed  Google Scholar 

  • Cooper SJ, MacGowan J, Ranger-Moore J, Young MR, Colburn NH, Bowden GT . (2003). Expression of dominant negative c-jun inhibits ultraviolet B-induced squamous cell carcinoma number and size in an SKH-1 hairless mouse model. Mol Cancer Res 1: 848–854.

    CAS  PubMed  Google Scholar 

  • Crish JF, Bone F, Banks EB, Eckert RL . (2002). The human involucrin gene contains spatially distinct regulatory elements that regulate expression during early versus late epidermal differentiation. Oncogene 21: 738–747.

    Article  CAS  PubMed  Google Scholar 

  • Crish JF, Eckert RL . (2008). Synergistic activation of human involucrin gene expression by Fra-1 and p300-evidence for the presence of a multiprotein complex. J Invest Dermatol 128: 530–541.

    Article  CAS  PubMed  Google Scholar 

  • Crish JF, Gopalakrishnan R, Bone F, Gilliam AC, Eckert RL . (2006). The distal and proximal regulatory regions of the involucrin gene promoter have distinct functions and are required for in vivo involucrin expression. J Invest Dermatol 126: 305–314.

    Article  CAS  PubMed  Google Scholar 

  • Crish JF, Howard JM, Zaim TM, Murthy S, Eckert RL . (1993). Tissue-specific and differentiation-appropriate expression of the human involucrin gene in transgenic mice: an abnormal epidermal phenotype. Differentiation 53: 191–200.

    Article  CAS  PubMed  Google Scholar 

  • Crish JF, Zaim TM, Eckert RL . (1998). The distal regulatory region of the human involucrin promoter is required for expression in epidermis. J Biol Chem 273: 30460–30465.

    Article  CAS  PubMed  Google Scholar 

  • Cutler TJ . (2004). Corneal epithelial disease. Vet Clin North Am Equine Pract 20: 319–343, vi.

    Article  PubMed  Google Scholar 

  • Deng T, Karin M . (1993). JunB differs from c-Jun in its DNA-binding and dimerization domains, and represses c-Jun by formation of inactive heterodimers. Genes Dev 7: 479–490.

    Article  CAS  PubMed  Google Scholar 

  • Diamond I, Owolabi T, Marco M, Lam C, Glick A . (2000). Conditional gene expression in the epidermis of transgenic mice using the tetracycline-regulated transactivators tTA and rTA linked to the keratin 5 promoter. J Invest Dermatol 115: 788–794.

    Article  CAS  PubMed  Google Scholar 

  • Dunnwald M, Tomanek-Chalkley A, Alexandrunas D, Fishbaugh J, Bickenbach JR . (2001). Isolating a pure population of epidermal stem cells for use in tissue engineering. Exp Dermatol 10: 45–54.

    Article  CAS  PubMed  Google Scholar 

  • Eckert RL . (1989). Structure, function, and differentiation of the keratinocyte. Physiol Rev 69: 1316–1346.

    Article  CAS  PubMed  Google Scholar 

  • Eckert RL, Crish JF, Efimova T, Dashti SR, Deucher A, Bone F et al. (2004). Regulation of involucrin gene expression. J Invest Dermatol 123: 13–22.

    Article  CAS  PubMed  Google Scholar 

  • Eckert RL, Crish JF, Robinson NA . (1997). The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation. Physiol Rev 77: 397–424.

    Article  CAS  PubMed  Google Scholar 

  • Eckert RL, Efimova T, Balasubramanian S, Crish JF, Bone F, Dashti S . (2003). p38 Mitogen-Activated Protein Kinases on the body surface—a function for p38delta. J Invest Dermatol 120: 823–828.

    Article  CAS  PubMed  Google Scholar 

  • Eckert RL, Efimova T, Dashti SR, Balasubramanian S, Deucher A, Crish JF et al. (2002). Keratinocyte survival, differentiation, and death: many roads lead to mitogen-activated protein kinase. J Invest Dermatol Symp Proc 7: 36–40.

    Article  CAS  Google Scholar 

  • Eckert RL, Welter JF . (1996a). Epidermal keratinoctyes—genes and their regulation. Cell Death Differ 3: 373–383.

    CAS  PubMed  Google Scholar 

  • Eckert RL, Welter JF . (1996b). Transcription factor regulation of epidermal keratinocyte gene expression. Mol Biol Rep 23: 59–70.

    Article  CAS  PubMed  Google Scholar 

  • Efimova T, Broome AM, Eckert RL . (2003). A regulatory role for p38 delta MAPK in keratinocyte differentiation. Evidence for p38 delta-ERK1/2 complex formation. J Biol Chem 278: 34277–34285.

    Article  CAS  PubMed  Google Scholar 

  • Efimova T, Broome AM, Eckert RL . (2004). Protein kinase Cdelta regulates keratinocyte death and survival by regulating activity and subcellular localization of a p38delta-extracellular signal-regulated kinase 1/2 complex. Mol Cell Biol 24: 8167–8183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efimova T, Deucher A, Kuroki T, Ohba M, Eckert RL . (2002). Novel protein kinase C isoforms regulate human keratinocyte differentiation by activating a p38 delta mitogen-activated protein kinase cascade that targets CCAAT/enhancer-binding protein alpha. J Biol Chem 277: 31753–31760.

    Article  CAS  PubMed  Google Scholar 

  • Efimova T, LaCelle P, Welter JF, Eckert RL . (1998). Regulation of human involucrin promoter activity by a protein kinase C, Ras, MEKK1, MEK3, p38/RK, AP1 signal transduction pathway. J Biol Chem 273: 24387–24395.

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann A, Hafezi F, Elliott C, Reme CE, Ruther U, Wagner EF . (2000). Fra-1 replaces c-Fos-dependent functions in mice. Genes Dev 14: 2695–2700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florin L, Knebel J, Zigrino P, Vonderstrass B, Mauch C, Schorpp-Kistner M et al. (2006). Delayed wound healing and epidermal hyperproliferation in mice lacking JunB in the skin. J Invest Dermatol 126: 902–911.

    Article  CAS  PubMed  Google Scholar 

  • Gandarillas A . (2000). Epidermal differentiation, apoptosis, and senescence: common pathways? Exp Gerontol 35: 53–62.

    Article  CAS  PubMed  Google Scholar 

  • Gandarillas A, Goldsmith LA, Gschmeissner S, Leigh IM, Watt FM . (1999). Evidence that apoptosis and terminal differentiation of epidermal keratinocytes are distinct processes. Exp Dermatol 8: 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Grossman D, Kim PJ, Blanc-Brude OP, Brash DE, Tognin S, Marchisio PC et al. (2001). Transgenic expression of survivin in keratinocytes counteracts UVB-induced apoptosis and cooperates with loss of p53. J Clin Invest 108: 991–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyden A, Lutzow-Holm C, Clausen OP, Brandtzaeg P, Huitfeldt HS . (1994a). Expression of keratins K6 and K16 in regenerating mouse epidermis is less restricted by cell replication than the expression of K1 and K10. Epithelial Cell Biol 3: 96–101.

    CAS  PubMed  Google Scholar 

  • Heyden A, Lutzow Holm C, Clausen OP, Thrane EV, Brandtzaeg P, Roop DR et al. (1994b). Application of cantharidin or 12-O-tetradecanoylphorbol-13- acetate on mouse epidermis induces a cell population shift that causes altered keratin distribution. Differentiation 57: 187–193.

    Article  CAS  PubMed  Google Scholar 

  • Iizuka H, Takahashi H, Honma M, Ishida-Yamamoto A . (2004). Unique keratinization process in psoriasis: late differentiation markers are abolished because of the premature cell death. J Dermatol 31: 271–276.

    Article  PubMed  Google Scholar 

  • Jaubert J, Patel S, Cheng J, Segre JA . (2004). Tetracycline-regulated transactivators driven by the involucrin promoter to achieve epidermal conditional gene expression. J Invest Dermatol 123: 313–318.

    Article  CAS  PubMed  Google Scholar 

  • Kahn CR, Young E, Lee IH, Rhim JS . (1993). Human corneal epithelial primary cultures and cell lines with extended life span: in vitro model for ocular studies. Invest Ophthalmol Vis Sci 34: 3429–3441.

    CAS  PubMed  Google Scholar 

  • Karin M . (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270: 16483–16486.

    Article  CAS  PubMed  Google Scholar 

  • Karin M . (1998). Mitogen-activated protein kinase cascades as regulators of stress responses. Ann N Y Acad Sci 851: 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Liu Z, Zandi E . (1997). AP-1 function and regulation. Curr Opin Cell Biol 9: 240–246.

    Article  CAS  PubMed  Google Scholar 

  • Matthews CP, Birkholz AM, Baker AR, Perella CM, Beck Jr GR, Young MR et al. (2007). Dominant-negative activator protein 1 (TAM67) targets cyclooxygenase-2 and osteopontin under conditions in which it specifically inhibits tumorigenesis. Cancer Res 67: 2430–2438.

    Article  CAS  PubMed  Google Scholar 

  • Mehic D, Bakiri L, Ghannadan M, Wagner EF, Tschachler E . (2005). Fos and jun proteins are specifically expressed during differentiation of human keratinocytes. J Invest Dermatol 124: 212–220.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno H, Cho YY, Ma WY, Bode AM, Dong Z . (2006). Effects of MAP kinase inhibitors on epidermal growth factor-induced neoplastic transformation of human keratinocytes. Mol Carcinog 45: 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molloy CJ, Laskin JD . (1987). Specific alterations in keratin biosynthesis in mouse epidermis in vivo and in explant culture following a single exposure to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 47: 4674–4680.

    CAS  PubMed  Google Scholar 

  • Nickoloff BJ . (1999). Animal models of psoriasis. Expert Opin Investig Drugs 8: 393–401.

    Article  CAS  PubMed  Google Scholar 

  • Nickoloff BJ, Denning M . (2001). Life and death signaling in epidermis: following a planned cell death pathway involving a trail that does not lead to skin cancer. J Invest Dermatol 117: 1–2.

    Article  CAS  PubMed  Google Scholar 

  • Nickoloff BJ, Qin JZ, Chaturvedi V, Bacon P, Panella J, Denning MF . (2002). Life and death signaling pathways contributing to skin cancer. J Investig Dermatol Symp Proc 7: 27–35.

    Article  CAS  PubMed  Google Scholar 

  • Passegue E, Jochum W, Behrens A, Ricci R, Wagner EF . (2002). JunB can substitute for Jun in mouse development and cell proliferation. Nat Genet 30: 158–166.

    Article  CAS  PubMed  Google Scholar 

  • Passegue E, Wagner EF . (2000). JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. EMBO J 19: 2969–2979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raj D, Brash DE, Grossman D . (2006). Keratinocyte apoptosis in epidermal development and disease. J Invest Dermatol 126: 243–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutberg SE, Adams TL, Glick A, Bonovich MT, Vinson C, Yuspa SH . (2000). Activator protein 1 transcription factors are fundamental to v-rasHa-induced changes in gene expression in neoplastic keratinocytes. Cancer Res 60: 6332–6338.

    CAS  PubMed  Google Scholar 

  • Saez E, Rutberg SE, Mueller E, Oppenheim H, Smoluk J, Yuspa SH et al. (1995). c-fos is required for malignant progression of skin tumors. Cell 82: 721–732.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber M, Wang ZQ, Jochum W, Fetka I, Elliott C, Wagner EF . (2000). Placental vascularisation requires the AP-1 component fra1. Development 127: 4937–4948.

    CAS  PubMed  Google Scholar 

  • Schutte J, Minna JD, Birrer MJ . (1989). Deregulated expression of human c-jun transforms primary rat embryo cells in cooperation with an activated c-Ha-ras gene and transforms rat-1a cells as a single gene. Proc Natl Acad Sci USA 86: 2257–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaulian E, Karin M . (2001). AP-1 in cell proliferation and survival. Oncogene 20: 2390–2400.

    Article  CAS  PubMed  Google Scholar 

  • Shaulian E, Karin M . (2002). AP-1 as a regulator of cell life and death. Nat Cell Biol 4: E131–E136.

    Article  CAS  PubMed  Google Scholar 

  • She QB, Chen N, Bode AM, Flavell RA, Dong Z . (2002). Deficiency of c-Jun-NH(2)-terminal kinase-1 in mice enhances skin tumor development by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 62: 1343–1348.

    CAS  PubMed  Google Scholar 

  • Shi B, Isseroff RR . (2005). Epidermal growth factor (EGF)-mediated DNA-binding activity of AP-1 is attenuated in senescent human epidermal keratinocytes. Exp Dermatol 14: 519–527.

    Article  CAS  PubMed  Google Scholar 

  • Simon M, Green H . (1985). Enzymatic cross-linking of involucrin and other proteins by keratinocyte particulates in vitro. Cell 40: 677–683.

    Article  CAS  PubMed  Google Scholar 

  • Sun TT, Eichner R, Nelson WG, Tseng SC, Weiss RA, Jarvinen M et al. (1983). Keratin classes: molecular markers for different types of epithelial differentiation. J Invest Dermatol 81: 109s–115s.

    Article  CAS  PubMed  Google Scholar 

  • Sun TT, Eichner R, Schermer A, Cooper D, Nelson WG, Weiss RA . (1984). Classification, expression and possible mechanisms of evolution of mammalian epithelial keratins: a unifying model. Cancer Cells 1: 169–176.

    CAS  Google Scholar 

  • Takahashi H, Ibe M, Nakamura S, Ishida-Yamamoto A, Hashimoto Y, Iizuka H . (2002). Extracellular regulated kinase and c-Jun N-terminal kinase are activated in psoriatic involved epidermis. J Dermatol Sci 30: 94–99.

    Article  CAS  PubMed  Google Scholar 

  • Thompson EJ, MacGowan J, Young MR, Colburn N, Bowden GT . (2002). A dominant negative c-jun specifically blocks okadaic acid-induced skin tumor promotion. Cancer Res 62: 3044–3047.

    CAS  PubMed  Google Scholar 

  • Toftgard R, Yuspa SH, Roop DR . (1985). Keratin gene expression in mouse skin tumors and in mouse skin treated with 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 45: 5845–5850.

    CAS  PubMed  Google Scholar 

  • Welter JF, Crish JF, Agarwal C, Eckert RL . (1995). Fos-related antigen (Fra-1), junB, and junD activate human involucrin promoter transcription by binding to proximal and distal AP1 sites to mediate phorbol ester effects on promoter activity. J Biol Chem 270: 12614–12622.

    Article  CAS  PubMed  Google Scholar 

  • Welter JF, Eckert RL . (1995). Differential expression of fos and jun family members c-fos, fosB, Fra-1, Fra-2, c-jun, junB and junD during human epidermal keratinocyte differentiation. Oncogene 11: 2681–2687.

    CAS  PubMed  Google Scholar 

  • Young AR . (1987). The sunburn cell. Photodermatol 4: 127–134.

    CAS  PubMed  Google Scholar 

  • Young MR, Farrell L, Lambert P, Awasthi P, Colburn NH . (2002). Protection against human papillomavirus type 16-E7 oncogene-induced tumorigenesis by in vivo expression of dominant-negative c-jun. Mol Carcinog 34: 72–77.

    Article  CAS  PubMed  Google Scholar 

  • Young MR, Li JJ, Rincon M, Flavell RA, Sathyanarayana BK, Hunziker R et al. (1999). Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. Proc Natl Acad Sci USA 96: 9827–9832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenz R, Eferl R, Kenner L, Florin L, Hummerich L, Mehic D et al. (2005). Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437: 369–375.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH RO1 AR046494 (R Eckert).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E A Rorke or R L Eckert.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rorke, E., Adhikary, G., Jans, R. et al. AP1 factor inactivation in the suprabasal epidermis causes increased epidermal hyperproliferation and hyperkeratosis but reduced carcinogen-dependent tumor formation. Oncogene 29, 5873–5882 (2010). https://doi.org/10.1038/onc.2010.315

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.315

Keywords

This article is cited by

Search

Quick links