Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Subtle distinct regulations of late erythroid molecular events by PI3K/AKT-mediated activation of Spi-1/PU.1 oncogene autoregulation loop

Abstract

Spi-1/PU.1 oncogene is downregulated as proerythroblasts undergo terminal differentiation. Insertion of the Friend virus upstream of the Spi-1/PU.1 locus leads to the constitutive upregulation of Spi-1/PU.1, and a subsequent block in the differentiation of the affected erythroblasts. We have shown that sustained overexpression of Spi-1/PU.1 also inhibits the erythroid splicing of protein 4.1R exon 16, irrespective of chemical induction of differentiation. Here, we show a positive feedback loop that couples constitutive phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling to high expression of Spi-1/PU.1 in Friend erythroleukemia cells. Inhibition of PI3K/AKT results in Spi-1/PU.1 downregulation in a stepwise manner and induces cell differentiation. Chromatin immunoprecipitation assays further supported the positive autoregulatory effect of Spi-1/PU.1. Mutational analysis indicated that Ser41, but not Ser148, is necessary for Spi-1/PU.1-mediated repression of hemoglobin expression, whereas both Ser residues are required for Spi-1/PU.1 inhibition of the erythroid splicing event. We further show that inhibition of the erythroid transcriptional and splicing events are strictly dependent on distinct Spi-1/PU.1 phosphorylation modifications rather than Spi-1/PU.1 expression level per se. Our data further support the fact that Spi-1/PU.1 inhibits 4.1R erythroid splicing through two different pathways, and bring new insights into the extracellular signal impact triggered by erythropoietin on late erythroid regulatory program, including pre-mRNA splicing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

ChIP:

chromatin immunoprecipitation

DMSO:

dimethylsulfoxide

Epo:

erythropoietin

MEL:

mouse erythroleukemia

SFFV:

spleen focus-forming virus

References

  • Afrikanova I, Yeh E, Bartos D, Watowich SS, Longmore GD . (2002). Oncogene cooperativity in Friend erythroleukemia: erythropoietin receptor activation by the env gene of SFFV leads to transcriptional upregulation of PU.1, independent of SFFV proviral insertion. Oncogene 21: 1272–1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Back J, Dierich A, Bronn C, Kastner P, Chan S . (2004). PU.1 determines the self-renewal capacity of erythroid progenitor cells. Blood 103: 3615–3623.

    Article  CAS  PubMed  Google Scholar 

  • Baklouti F, Huang SC, Tang TK, Delaunay J, Marchesi VT, Benz Jr EJ . (1996). Asynchronous regulation of splicing events within protein 4.1 pre-mRNA during erythroid differentiation. Blood 87: 3934–3941.

    CAS  PubMed  Google Scholar 

  • Bao H, Jacobs-Helber SM, Lawson AE, Penta K, Wickrema A, Sawyer ST . (1999). Protein kinase B (c-Akt), phosphatidylinositol 3-kinase, and STAT5 are activated by erythropoietin (EPO) in HCD57 erythroid cells but are constitutively active in an EPO-independent, apoptosis-resistant subclone (HCD57-SREI cells). Blood 93: 3757–3773.

    CAS  PubMed  Google Scholar 

  • Barnache S, Mayeux P, Payrastre B, Moreau-Gachelin F . (2001). Alterations of the phosphoinositide 3-kinase and mitogen-activated protein kinase signaling pathways in the erythropoietin-independent Spi-1/PU.1 transgenic proerythroblasts. Blood 98: 2372–2381.

    Article  CAS  PubMed  Google Scholar 

  • Bavelloni A, Faenza I, Aluigi M, Ferri A, Toker A, Maraldi NM et al. (2000). Inhibition of phosphoinositide 3-kinase impairs pre-commitment cell cycle traverse and prevents differentiation in erythroleukaemia cells. Cell Death Differ 7: 112–117.

    Article  CAS  PubMed  Google Scholar 

  • Blaustein M, Pelisch F, Srebrow A . (2007). Signals, pathways and splicing regulation. Int J Biochem Cell Biol 39: 2031–2048.

    Article  CAS  PubMed  Google Scholar 

  • Blaustein M, Pelisch F, Tanos T, Munoz MJ, Wengier D, Quadrana L et al. (2005). Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat Struct Mol Biol 12: 1037–1044.

    Article  CAS  PubMed  Google Scholar 

  • Blaybel R, Théoleyre O, Douablin A, Baklouti F . (2008). Downregulation of the Spi-1/PU.1 oncogene induces the expression of TRIM10/HERF1, a key factor required for terminal erythroid cell differentiation and survival. Cell Res 18: 834–845.

    Article  CAS  PubMed  Google Scholar 

  • Bouscary D, Pene F, Claessens YE, Muller O, Chretien S, Fontenay-Roupie M et al. (2003). Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation. Blood 101: 3436–3443.

    Article  CAS  PubMed  Google Scholar 

  • Cataldi A, Di Pietro R, Centurione L, Grilli A, Cutroneo G, Miscia S . (2000). Phosphatidylinositol-3-kinase activation and atypical protein kinase C zeta phosphorylation characterize the DMSO signalling in erythroleukemia cells. Cell Signal 12: 667–672.

    Article  CAS  PubMed  Google Scholar 

  • Chasis JA, Coulombel L, Conboy J, McGee S, Andrews K, Kan YW et al. (1993). Differentiation-associated switches in protein 4.1 expression. Synthesis of multiple structural isoforms during normal human erythropoiesis. J Clin Invest 91: 329–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Ray-Gallet D, Zhang P, Hetherington CJ, Gonzalez DA, Zhang DE et al. (1995). PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene 11: 1549–1560.

    CAS  PubMed  Google Scholar 

  • Deguillien M, Huang SC, Morinière M, Dreumont N, Benz Jr EJ, Baklouti F . (2001). Multiple cis elements regulate an alternative splicing event at 4.1R pre-mRNA during erythroid differentiation. Blood 98: 3809–3816.

    Article  CAS  PubMed  Google Scholar 

  • Delgado MD, Hallier M, Meneceur P, Tavitian A, Moreau-Gachelin F . (1994). Inhibition of Friend cells proliferation by spi-1 antisense oligodeoxynucleotides. Oncogene 9: 1723–1727.

    CAS  PubMed  Google Scholar 

  • Delva L, Gallais I, Guillouf C, Denis N, Orvain C, Moreau-Gachelin F . (2004). Multiple functional domains of the oncoproteins Spi-1/PU.1 and TLS are involved in their opposite splicing effects in erythroleukemic cells. Oncogene 23: 4389–4399.

    Article  CAS  PubMed  Google Scholar 

  • Eisenbeis CF, Singh H, Storb U . (1995). Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dev 9: 1377–1387.

    Article  CAS  PubMed  Google Scholar 

  • Fisher RC, Slayton WB, Chien C, Guthrie SM, Bray C, Scott EW . (2004). PU.1 supports proliferation of immature erythroid progenitors. Leuk Res 28: 83–89.

    Article  CAS  PubMed  Google Scholar 

  • Ghaffari S, Huang LJS, Zhang J, Lodish HF . (2003). Erythropoietin receptor signaling processes. In: Molineux G, Foote MA and Elliott SG (eds). Erythropoietins and Erythropoiesis. Birkhauser: Basel, Switzerland.

    Google Scholar 

  • Jelkmann W . (2007). Erythropoietin after a century of research: younger than ever. Eur J Haematol 78: 183–205.

    Article  CAS  PubMed  Google Scholar 

  • Juban G, Giraud G, Guyot B, Belin S, Diaz JJ, Starck J et al. (2009). Spi-1 and Fli-1 directly activate common target genes involved in ribosome biogenesis in Friend erythroleukemic cells. Mol Cell Biol 29: 2852–2864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maillet P, Delaunay J, Baklouti F . (1996). Chimeric probe-mediated ribonuclease protection assay for molecular diagnosis of mRNA deficiencies. Hum Mutat 7: 61–64.

    Article  CAS  PubMed  Google Scholar 

  • Moreau-Gachelin F . (2008). Multi-stage Friend murine erythroleukemia: molecular insights into oncogenic cooperation. Retrovirology 5: 99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreau-Gachelin F, Ray D, Mattei MG, Tambourin P, Tavitian A . (1989). The putative oncogene Spi-1: murine chromosomal localization and transcriptional activation in murine acute erythroleukemias. Oncogene 4: 1449–1456.

    CAS  PubMed  Google Scholar 

  • Myklebust JH, Blomhoff HK, Rusten LS, Stokke T, Smeland EB . (2002). Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. Exp Hematol 30: 990–1000.

    Article  CAS  PubMed  Google Scholar 

  • Nerlov C, Querfurth E, Kulessa H, Graf T . (2000). GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood 95: 2543–2551.

    CAS  PubMed  Google Scholar 

  • Nishigaki K, Hanson C, Ohashi T, Spadaccini A, Ruscetti S . (2006). Erythroblast transformation by the friend spleen focus-forming virus is associated with a block in erythropoietin-induced STAT1 phosphorylation and DNA binding and correlates with high expression of the hematopoietic phosphatase SHP-1. J Virol 80: 5678–5685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishigaki K, Hanson C, Ohashi T, Thompson D, Muszynski K, Ruscetti S . (2000). Erythroid cells rendered erythropoietin independent by infection with Friend spleen focus-forming virus show constitutive activation of phosphatidylinositol 3-kinase and Akt kinase: involvement of insulin receptor substrate-related adapter proteins. J Virol 74: 3037–3045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuno Y, Huang G, Rosenbauer F, Evans EK, Radomska HS, Iwasaki H et al. (2005). Potential autoregulation of transcription factor PU.1 by an upstream regulatory element. Mol Cell Biol 25: 2832–2845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel NA, Kaneko S, Apostolatos HS, Bae SS, Watson JE, Davidowitz K et al. (2005). Molecular and genetic studies imply Akt-mediated signaling promotes protein kinase CbetaII alternative splicing via phosphorylation of serine/arginine-rich splicing factor SRp40. J Biol Chem 280: 14302–14309.

    Article  CAS  PubMed  Google Scholar 

  • Paul R, Schuetze S, Kozak SL, Kozak CA, Kabat D . (1991). The Sfpi-1 proviral integration site of Friend erythroleukemia encodes the ets-related transcription factor Pu.1. J Virol 65: 464–467.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pongubala JM, Van Beveren C, Nagulapalli S, Klemsz MJ, McKercher SR, Maki RA et al. (1993). Effect of PU.1 phosphorylation on interaction with NF-EM5 and transcriptional activation. Science 259: 1622–1625.

    Article  CAS  PubMed  Google Scholar 

  • Rao G, Rekhtman N, Cheng G, Krasikov T, Skoultchi AI . (1997). Deregulated expression of the PU.1 transcription factor blocks murine erythroleukemia cell terminal differentiation. Oncogene 14: 123–131.

    Article  CAS  PubMed  Google Scholar 

  • Rekhtman N, Radparvar F, Evans T, Skoultchi AI . (1999). Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev 13: 1398–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieske P, Pongubala JM . (2001). AKT induces transcriptional activity of PU.1 through phosphorylation-mediated modifications within its transactivation domain. J Biol Chem 276: 8460–8468.

    Article  CAS  PubMed  Google Scholar 

  • Sanjuan MA, Jones DR, Izquierdo M, Merida I . (2001). Role of diacylglycerol kinase alpha in the attenuation of receptor signaling. J Cell Biol 153: 207–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuetze S, Paul R, Gliniak BC, Kabat D . (1992). Role of the PU.1 transcription factor in controlling differentiation of Friend erythroleukemia cells. Mol Cell Biol 12: 2967–2975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott EW, Simon MC, Anastasi J, Singh H . (1994). Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265: 1573–1577.

    Article  CAS  PubMed  Google Scholar 

  • Sivertsen EA, Hystad ME, Gutzkow KB, Dosen G, Smeland EB, Blomhoff HK et al. (2006). PI3K/Akt-dependent Epo-induced signalling and target genes in human early erythroid progenitor cells. Br J Haematol 135: 117–128.

    Article  CAS  PubMed  Google Scholar 

  • Tarn WY . (2007). Cellular signals modulate alternative splicing. J Biomed Sci 14: 517–522.

    Article  CAS  PubMed  Google Scholar 

  • Théoleyre O, Deguillien M, Morinière M, Starck J, Moreau-Gachelin F, Morlé F et al. (2004). Spi-1/PU.1 but not Fli-1 inhibits erythroid-specific alternative splicing of 4.1R pre-mRNA in murine erythroleukemia cells. Oncogene 23: 920–927.

    Article  PubMed  Google Scholar 

  • Yamada T, Kondoh N, Matsumoto M, Yoshida M, Maekawa A, Oikawa T . (1997). Overexpression of PU.1 induces growth and differentiation inhibition and apoptotic cell death in murine erythroleukemia cells. Blood 89: 1383–1393.

    CAS  PubMed  Google Scholar 

  • Zhang P, Behre G, Pan J, Iwama A, Wara-Aswapati N, Radomska HS et al. (1999). Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc Natl Acad Sci USA 96: 8705–8710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr I Merida (Department of Immunology and Oncology, Centro Nacional de Biotecnologia, Madrid, Spain) for pEFbosEGFP_C1 plasmid, Dr F Moreau-Gachelin (Inserm U830, Institut Curie, Paris, France) for anti-Spi-1/PU.1 antibody, G Giraud for helping with the ChIP assay and Dr G Mouchiroud and Dr F Morlé (CGMC, Villeurbanne, France) for sharing reagents, including anti-p85 antibody. This work was supported by grants from the ‘Ligue contre le Cancer, Comité de la Loire’. Authors were supported by the INSERM, the ‘Ligue contre le Cancer, Comité de la Loire’, the ‘Ligue contre le Cancer, Comité du Doubs’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Baklouti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breig, O., Théoleyre, O., Douablin, A. et al. Subtle distinct regulations of late erythroid molecular events by PI3K/AKT-mediated activation of Spi-1/PU.1 oncogene autoregulation loop. Oncogene 29, 2807–2816 (2010). https://doi.org/10.1038/onc.2010.29

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.29

Keywords

This article is cited by

Search

Quick links