Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Snm1B/Apollo mediates replication fork collapse and S Phase checkpoint activation in response to DNA interstrand cross-links

Abstract

The removal of DNA interstrand cross-links (ICLs) has proven to be notoriously complicated due to the involvement of multiple pathways of DNA repair, which include the Fanconi anemia/BRCA pathway, homologous recombination and components of the nucleotide excision and mismatch repair pathways. Members of the SNM1 gene family have also been shown to have a role in mediating cellular resistance to ICLs, although their precise function has remained elusive. Here, we show that knockdown of Snm1B/Apollo in human cells results in hypersensitivity to mitomycin C (MMC), but not to IR. We also show that Snm1B-deficient cells exhibit a defective S phase checkpoint in response to MMC, but not to IR, and this finding may account for the specific sensitivity to the cross-linking drug. Interestingly, although previous studies have largely implicated ATR as the major kinase activated in response to ICLs, we show that it is activation of the ATM-mediated checkpoint that is defective in Snm1B-deficient cells. The requirement for Snm1B in ATM checkpoint activation specifically after ICL damage is correlated with its role in promoting double-strand break formation, and thus replication fork collapse. Consistent with this result Snm1B was found to interact directly with Mus81-Eme1, an endonuclease previously implicated in fork collapse. In addition, we also show that Snm1B interacts with the Mre11-Rad50-Nbs1 (MRN) complex and with FancD2 further substantiating its role as a checkpoint/DNA repair protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ahkter S, Richie CT, Zhang N, Behringer RR, Zhu C, Legerski RJ . (2005). Snm1-deficient mice exhibit accelerated tumorigenesis and susceptibility to infection. Mol Cell Biol 25: 10071–10078.

    Article  CAS  Google Scholar 

  • Akhter S, Richie CT, Deng JM, Brey E, Zhang X, Patrick Jr C et al. (2004). Deficiency in SNM1 abolishes an early mitotic checkpoint induced by spindle stress. Mol Cell Biol 24: 10448–10455.

    Article  CAS  Google Scholar 

  • Akkari YM, Bateman RL, Reifsteck CA, D'Andrea AD, Olson SB, Grompe M . (2001). The 4N cell cycle delay in Fanconi anemia reflects growth arrest in late S phase. Mol Genet Metab 74: 403–412.

    Article  CAS  Google Scholar 

  • Andreassen PR, D'Andrea AD, Taniguchi T . (2004). ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev 18: 1958–1963.

    Article  CAS  Google Scholar 

  • Bakkenist CJ, Kastan MB . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    Article  CAS  Google Scholar 

  • Barber LJ, Ward TA, Hartley JA, McHugh PJ . (2005). DNA interstrand cross-link repair in the Saccharomyces cerevisiae cell cycle: overlapping roles for PSO2 (SNM1) with MutS factors and EXO1 during S phase. Mol Cell Biol 25: 2297–2309.

    Article  CAS  Google Scholar 

  • Bartek J, Lukas C, Lukas J . (2004). Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 5: 792–804.

    Article  CAS  Google Scholar 

  • Callebaut I, Moshous D, Mornon JP, De Villartay JP . (2002). Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res 30: 3592–3601.

    Article  CAS  Google Scholar 

  • Chan DW, Chen BP, Prithivirajsingh S, Kurimasa A, Story MD, Qin J et al. (2002). Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev 16: 2333–2338.

    Article  CAS  Google Scholar 

  • Chaturvedi P, Sudakin V, Bobiak ML, Fisher PW, Mattern MR, Jablonski S et al. (2002). Chfr regulates a mitotic stress pathway through its RING-finger domain with ubiquitin ligase activity. Cancer Res 62: 1797–1801.

    CAS  Google Scholar 

  • Demuth I, Digweed M, Concannon P . (2004). Human SNM1B is required for normal cellular response to both DNA interstrand crosslink-inducing agents and ionizing radiation. Oncogene 23: 8611–8618.

    Article  CAS  Google Scholar 

  • Dominski Z . (2007). Nucleases of the metallo-beta-lactamase family and their role in DNA and RNA metabolism. Crit Rev Biochem Mol Biol 42: 67–93.

    Article  CAS  Google Scholar 

  • Dronkert ML, De Wit J, Boeve M, Vasconcelos ML, van Steeg H, Tan TL et al. (2000). Disruption of mouse SNM1 causes increased sensitivity to the DNA interstrand cross-linking agent mitomycin C. Mol Cell Biol 20: 4553–4561.

    Article  CAS  Google Scholar 

  • Freibaum BD, Counter CM . (2006). hSnm1B is a novel telomere-associated protein. J Biol Chem 281: 15033–15036..

    Article  CAS  Google Scholar 

  • Geng L, Zhang X, Zheng S, Legerski RJ . (2007). Artemis links ATM to G2/M checkpoint recovery via regulation of Cdk1-cyclin B. Mol Cell Bio 27: 2625–2635.

    Article  CAS  Google Scholar 

  • Grossmann KF, Ward AM, Matkovic ME, Folias AE, Moses RE . (2001). S.cerevisiae has three pathways for DNA interstrand crosslink repair. Mutat Res 487: 73–83.

    Article  CAS  Google Scholar 

  • Haase E, Riehl D, Mack M, Brendel M . (1989). Molecular cloning of SNM1, a yeast gene responsible for a specific step in the repair of cross-linked DNA. Mol Gen Genet 218: 64–71.

    Article  CAS  Google Scholar 

  • Hanada K, Budzowska M, Modesti M, Maas A, Wyman C, Essers J et al. (2006). The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J 25: 4921–4932.

    Article  CAS  Google Scholar 

  • Henriques JA, Moustacchi E . (1980). Isolation and characterization of pso mutants sensitive to photo-addition of psoralen derivatives in Saccharomyces cerevisiae. Genetics 95: 273–288.

    CAS  Google Scholar 

  • Ho GP, Margossian S, Taniguchi T, D'Andrea AD . (2006). Phosphorylation of FANCD2 on two novel sites is required for mitomycin C resistance. Mol Cell Biol 26: 7005–7015.

    Article  CAS  Google Scholar 

  • Interthal H, Heyer WD . (2000). MUS81 encodes a novel helix-hairpin-helix protein involved in the response to UV- and methylation-induced DNA damage in Saccharomyces cerevisiae. Mol Gen Genet 263: 812–827.

    Article  CAS  Google Scholar 

  • Ishiai M, Kimura M, Namikoshi K, Yamazoe M, Yamamoto K, Arakawa H et al. (2004). DNA cross-link repair protein SNM1A interacts with PIAS1 in nuclear focus formation. Mol Cell Biol 24: 10733–10741.

    Article  CAS  Google Scholar 

  • Lambert S, Carr AM . (2005). Checkpoint responses to replication fork barriers. Biochimie 87: 591–602.

    Article  CAS  Google Scholar 

  • Lenain C, Bauwens S, Amiard S, Brunori M, Giraud-Panis MJ, Gilson E . (2006). The Apollo 5′ exonuclease functions together with TRF2 to protect telomeres from DNA repair. Curr Biol 16: 1303–1310.

    Article  CAS  Google Scholar 

  • Li X, Hejna J, Moses RE . (2005). The yeast Snm1 protein is a DNA 5′-exonuclease. DNA Repair (Amst) 4: 163–170.

    Article  CAS  Google Scholar 

  • Li X, Moses RE . (2003). The beta-lactamase motif in Snm1 is required for repair of DNA double-strand breaks caused by interstrand crosslinks in S. cerevisiae. DNA Repair (Amst) 2: 121–129.

    Article  CAS  Google Scholar 

  • Lukas J, Lukas C, Bartek J . (2004). Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair (Amst) 3: 997–1007.

    Article  CAS  Google Scholar 

  • Ma Y, Pannicke U, Schwarz K, Lieber MR . (2002). Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 108: 781–794.

    Article  CAS  Google Scholar 

  • Magana-Schwencke N, Henriques JA, Chanet R, Moustacchi E . (1982). The fate of 8-methoxypsoralen photoinduced crosslinks in nuclear and mitochondrial yeast DNA: comparison of wild-type and repair-deficient strains. Proc Natl Acad Sci USA 79: 1722–1726.

    Article  CAS  Google Scholar 

  • Matsusaka T, Pines J . (2004). Chfr acts with the p38 stress kinases to block entry to mitosis in mammalian cells. J Cell Biol 166: 507–516.

    Article  CAS  Google Scholar 

  • McPherson JP, Lemmers B, Chahwan R, Pamidi A, Migon E, Matysiak-Zablocki E et al. (2004). Involvement of mammalian Mus81 in genome integrity and tumor suppression. Science 304: 1822–1826.

    Article  CAS  Google Scholar 

  • Mladenov E, Tsaneva I, Anachkova B . (2007). Activation of the S phase DNA damage checkpoint by mitomycin C. J Cell Physiol 211: 468–476.

    Article  CAS  Google Scholar 

  • Moshous D, Callebaut I, De Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F et al. (2001). Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105: 177–186.

    Article  CAS  Google Scholar 

  • Moshous D, Li L, Chasseval R, Philippe N, Jabado N, Cowan MJ et al. (2000). A new gene involved in DNA double-strand break repair and V(D)J recombination is located on human chromosome 10p. Hum Mol Genet 9: 583–588.

    Article  CAS  Google Scholar 

  • Multani AS, Ozen M, Narayan S, Kumar V, Chandra J, McConkey DJ et al. (2000). Caspase-dependent apoptosis induced by telomere cleavage and TRF2 loss. Neoplasia 2: 339–345.

    Article  CAS  Google Scholar 

  • Nakanishi K, Taniguchi T, Ranganathan V, New HV, Moreau LA, Stotsky M et al. (2002). Interaction of FANCD2 and NBS1 in the DNA damage response. Nat Cell Biol 4: 913–920.

    Article  CAS  Google Scholar 

  • Nakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, D'Andrea AD et al. (2005). Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci USA 102: 1110–1115.

    Article  CAS  Google Scholar 

  • Nojima K, Hochegger H, Saberi A, Fukushima T, Kikuchi K, Yoshimura M et al. (2005). Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells. Cancer Res 65: 11704–11711.

    Article  CAS  Google Scholar 

  • Painter RB, Young BR . (1980). Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc Natl Acad Sci USA 77: 7315–7317.

    Article  CAS  Google Scholar 

  • Pannicke U, Ma Y, Hopfner KP, Niewolik D, Lieber MR, Schwarz K . (2004). Functional and biochemical dissection of the structure-specific nuclease Artemis. EMBO J 23: 1987–1997.

    Article  CAS  Google Scholar 

  • Pichierri P, Averbeck D, Rosselli F . (2002). DNA cross-link-dependent RAD50/MRE11/NBS1 subnuclear assembly requires the Fanconi anemia C protein. Hum Mol Genet 11: 2531–2546.

    Article  CAS  Google Scholar 

  • Pichierri P, Rosselli F . (2004a). Fanconi anemia proteins and the s phase checkpoint. Cell Cycle 3: 698–700.

    Article  CAS  Google Scholar 

  • Pichierri P, Rosselli F . (2004b). The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. Embo J 23: 1178–1187.

    Article  CAS  Google Scholar 

  • Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ et al. (2004). A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 16: 715–724.

    Article  CAS  Google Scholar 

  • Richie CT, Peterson C, Lu T, Hittelman WN, Carpenter PB, Legerski RJ . (2002). hSnm1 colocalizes and physically associates with 53BP1 before and after DNA damage. Mol Cell Biol 22: 8635–8647.

    Article  CAS  Google Scholar 

  • Rooney S, Sekiguchi J, Whitlow S, Eckersdorff M, Manis JP, Lee C et al. (2004). Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B cells. Proc Natl Acad Sci USA 101: 2410–2415.

    Article  CAS  Google Scholar 

  • Rooney S, Sekiguchi J, Zhu C, Cheng HL, Manis J, Whitlow S et al. (2002). Leaky SCID phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol Cell 10: 1379–1390.

    Article  CAS  Google Scholar 

  • Ruhland A, Kircher M, Wilborn F, Brendel M . (1981). A yeast mutant specifically sensitive to bifunctional alkylation. Mutat Res 91: 457–462.

    Article  CAS  Google Scholar 

  • Sala-Trepat M, Rouillard D, Escarceller M, Laquerbe A, Moustacchi E, Papadopoulo D . (2000). Arrest of S-phase progression is impaired in Fanconi anemia cells. Exp Cell Res 260: 208–215.

    Article  CAS  Google Scholar 

  • Scolnick DM, Halazonetis TD . (2000). Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature 406: 430–435.

    Article  CAS  Google Scholar 

  • Seyschab H, Friedl R, Sun Y, Schindler D, Hoehn H, Hentze S et al. (1995). Comparative evaluation of diepoxybutane sensitivity and cell cycle blockage in the diagnosis of Fanconi anemia. Blood 85: 2233–2237.

    CAS  Google Scholar 

  • Shen X, Jun S, O'Neal LE, Sonoda E, Bemark M, Sale JE et al. (2006). REV3 and REV1 play major roles in recombination-independent repair of DNA interstrand cross-links mediated by monoubiquitinated proliferating cell nuclear antigen (PCNA). J Biol Chem 281: 13869–13872.

    Article  CAS  Google Scholar 

  • Sobeck A, Stone S, Costanzo V, De Graaf B, Reuter T, De Winter J et al. (2006). Fanconi anemia proteins are required to prevent accumulation of replication-associated DNA double-strand breaks. Mol Cell Biol 26: 425–437.

    Article  CAS  Google Scholar 

  • Stiff T, Reis C, Alderton GK, Woodbine L, O'Driscoll M, Jeggo PA . (2005). Nbs1 is required for ATR-dependent phosphorylation events. EMBO J 24: 199–208.

    Article  CAS  Google Scholar 

  • Summers MK, Bothos J, Halazonetis TD . (2005). The CHFR mitotic checkpoint protein delays cell cycle progression by excluding Cyclin B1 from the nucleus. Oncogene 24: 2589–2598.

    Article  CAS  Google Scholar 

  • Taniguchi T, Garcia-Higuera I, Xu B, Andreassen PR, Gregory RC, Kim ST et al. (2002). Convergence of the Fanconi anemia and ataxia telangiectasia signaling pathways. Cell 109: 459–472.

    Article  CAS  Google Scholar 

  • Thompson LH, Hinz JM, Yamada NA, Jones NJ . (2005). How Fanconi anemia proteins promote the four Rs: replication, recombination, repair, and recovery. Environ Mol Mutagen 45: 128–142.

    Article  CAS  Google Scholar 

  • van Overbeek M, De Lange T . (2006). Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase. Curr Biol 16: 1295–1302.

    Article  CAS  Google Scholar 

  • Wang J, Pluth JM, Cooper PK, Cowan MJ, Chen DJ, Yannone SM . (2005). Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression. DNA Repair (Amst) 4: 556–570.

    Article  CAS  Google Scholar 

  • Wang X, Peterson CA, Zheng H, Nairn RS, Legerski RJ, Li L . (2001). Involvement of nucleotide excision repair in a recombination-independent and error-prone pathway of DNA interstrand cross-link repair. Mol Cell Biol 21: 713–720.

    Article  CAS  Google Scholar 

  • Wilborn F, Brendel M . (1989). Formation and stability of interstrand cross-links induced by cis- and trans-diamminedichloroplatinum (II) in the DNA of Saccharomyces cerevisiae strains differing in repair capacity. Curr Genet 16: 331–338.

    Article  CAS  Google Scholar 

  • Xu B, Kim ST, Lim DS, Kastan MB . (2002). Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol 22: 1049–1059.

    Article  CAS  Google Scholar 

  • Yu X, Minter-Dykhouse K, Malureanu L, Zhao WM, Zhang D, Merkle CJ et al. (2005). Chfr is required for tumor suppression and Aurora A regulation. Nat Genet 37: 401–406.

    Article  CAS  Google Scholar 

  • Zhang N, Kaur R, Lu X, Shen X, Li L, Legerski RJ . (2005). The Pso4 mRNA splicing and DNA repair complex interacts with WRN for processing of DNA interstrand cross-links. J Biol Chem 280: 40559–40567.

    Article  CAS  Google Scholar 

  • Zhang N, Liu X, Li L, Legerski R . (2007). Double-strand breaks induce homologous recombinational repair of interstrand cross-links via cooperation of MSH2, ERCC1-XPF, REV3, and the Fanconi anemia pathway. DNA Repair (Amst) 6: 1670–1678.

    Article  CAS  Google Scholar 

  • Zhang X, Succi J, Feng Z, Prithivirajsingh S, Story MD, Legerski RJ . (2004). Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response. Mol Cell Biol 24: 9207–9220.

    Article  CAS  Google Scholar 

  • Zheng H, Wang X, Legerski RJ, Glazer PM, Li L . (2006). Repair of DNA interstrand cross-links: interactions between homology-dependent and homology-independent pathways. DNA Repair (Amst) 5: 566–574.

    Article  CAS  Google Scholar 

  • Zheng H, Wang X, Warren AJ, Legerski RJ, Nairn RS, Hamilton JW et al. (2003). Nucleotide excision repair- and polymerase eta-mediated error-prone removal of mitomycin C interstrand cross-links. Mol Cell Biol 23: 754–761.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Tanya Paull and Steve Patrick for the gift of MRN protein, and Jeffrey Parvin for the gift of FancD2 protein. This work was supported by NCI Grants CA052461 and CA097175. DNA sequencing resources were supported by the Cancer Center Support (Core) Grant CA16672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J Legerski.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, JB., Mukhopadhyay, S., Liu, L. et al. Snm1B/Apollo mediates replication fork collapse and S Phase checkpoint activation in response to DNA interstrand cross-links. Oncogene 27, 5045–5056 (2008). https://doi.org/10.1038/onc.2008.139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.139

Keywords

This article is cited by

Search

Quick links