Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by Reaper, Hid and Grim

Abstract

The Drosophila melanogaster inhibitor of apoptosis protein DIAP1 suppresses apoptosis in part through inhibition of the effector caspase DrICE. The pro-death proteins Reaper, Hid and Grim (RHG) induce apoptosis by antagonizing DIAP1 function. However, the underlying molecular mechanisms remain unknown. Here we demonstrate that DIAP1 directly inhibits the catalytic activity of DrICE through its BIR1 domain and this inhibition is countered effectively by the RHG proteins. Inhibition of DrICE by DIAP1 occurs only after the cleavage of its N-terminal 20 amino acids and involves a conserved surface groove on BIR1. Crystal structures of BIR1 bound to the RHG peptides show that the RHG proteins use their N-terminal IAP-binding motifs to bind to the same surface groove, hence relieving DIAP1-mediated inhibition of DrICE. These studies define novel molecular mechanisms for the inhibition and activation of a representative D. melanogaster effector caspase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The BIR1 domain of DIAP1 is necessary and sufficient for the inhibition of the catalytic activity of DrICE.
Figure 2: The conserved pocket of DIAP1-BIR1 is involved in DrICE interaction and inhibition.
Figure 3: The N-terminal residues of Hid antagonize DIAP1 function by displacing DIAP1 from DrICE.
Figure 4: A mechanistic explanation for developmental GOF mutations in the BIR1 domain.
Figure 5: Structural basis of recognition of the RHG peptides by DIAP1-BIR1.
Figure 6: The autoinhibition of DIAP1 resides in its N-terminal 20 residues.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Shi, Y. Mechanisms of caspase inhibition and activation during apoptosis. Mol. Cell 9, 459– 470 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Thornberry, N.A. & Lazebnik, Y. Caspases: Enemies within. Science 281, 1312– 1316 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Deveraux, Q.L. & Reed, J.C. IAP family proteins—suppressors of apoptosis. Genes Dev. 13, 239– 252 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Salvesen, G.S. & Duckett, C.S. IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell Biol. 3, 401– 410 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Hay, B.A., Wassarman, D.A. & Rubin, G.M. D. melanogaster homologs of baculoviral inhibitor of apoptosis proteins function to block cell death. Cell 83, 1253– 1262 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Shi, Y. A conserved tetrapeptide motif: Potentiating apoptosis through IAP-binding. Cell Death Differ. 9, 93– 95 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Shiozaki, E.N. et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol. Cell 11, 519– 527 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Srinivasula, S.M. et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO mediates opposing effects on caspase activity and apoptosis. Nature 409, 112– 116 (2001).

    Article  Google Scholar 

  9. Chai, J. et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855– 862 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Wu, G. et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 408, 1008– 1012 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, Z. et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408, 1004– 1008 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Chai, J. et al. Structural basis of caspase-7 inhibition by XIAP. Cell 104, 769– 780 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, Y. et al. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104, 781– 790 (2001).

    CAS  PubMed  Google Scholar 

  14. Riedl, S.J. et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 104, 791– 800 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Chai, J. et al. Molecular mechanism of Reaper/Grim/Hid-mediated suppression of DIAP1-dependent Dronc ubiquitination. Nat. Struct. Biol. 10, 892– 898 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Wilson, R. et al. The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nat. Cell Biol. 4, 445– 450 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Fraser, A.G. & Evan, G.I. Identification of a D. melanogaster ICE/CED-3-related protease, drICE. EMBO J. 16, 2805– 2813 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fraser, A.G., McCarthy, N.J. & Evan, G.I. drICE is an essential caspase required for apoptotic activity in D. melanogaster cells. EMBO J. 16, 6192– 6199 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hawkins, C.J. et al. The D. melanogaster caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J. Biol. Chem. 275, 27084– 27093 (2000).

    CAS  PubMed  Google Scholar 

  20. Meier, P., Silke, J., Leevers, S.J. & Evan, G.I. The D. melanogaster caspase DRONC is regulated by DIAP1. EMBO J. 19, 598– 611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaiser, W., Vucic, D. & Miller, L. The D. melanogaster inhibitor of apoptosis DIAP1 suppresses cell death induced by the caspase drICE. FEBS Lett. 440, 243– 248 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. Induction of apoptosis by D. melanogaster reaper, hid and grim through inhibition of IAP function. EMBO J. 19, 589– 597 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, S., Hawkins, C., Yoo, S., Muller, H.-A. & Hay, B. The D. melanogaster caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453– 463 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Lisi, S., Mazzon, I. & White, K. Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in D. melanogaster . Genetics 154, 669– 678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vucic, D., Kaiser, W.J. & Miller, L.K. Inhibitor of apoptosis proteins physically interact with and block apoptosis induced by D. melanogaster proteins HID and GRIM. Mol. Cell. Biol. 18, 3300– 3309 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Song, Z. et al. Biochemical and genetic interactions between D. melanogaster caspases and the proapoptotic genes rpr, hid, and grim. Mol. Cell Biol. 20, 2907– 2914 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hawkins, C., Wang, S. & Hay, B.A. A cloning method to identify caspases and their regulators in yeast: identification of D. melanogaster IAP1 as an inhibitor of the D. melanogaster caspase DCP-1. Proc. Natl. Acad. Sci. USA 96, 2885– 2890 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vucic, D., Kaiser, W.J., Harvey, A.J. & Miller, L.K. Inhibition of reaper-induced apoptosis by interaction with inhibitor of apoptosis proteins (IAPs). Proc. Natl. Acad. Sci. USA 94, 10183– 10188 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dorstyn, L., Colussi, P.A., Quinn, L.M., Richardson, H. & Kumar, S. DRONC, an ecdysone-inducible D. melanogaster caspase. Proc. Natl. Acad. Sci. USA 96, 4307– 4312 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun, C. et al. NMR structure and mutagenesis of the third BIR domain of the inhibitor of apoptosis protein XIAP. J. Biol. Chem. 275, 33777– 33781 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Fesik, S.W. Insights into programmed cell death through structural biology. Cell 103, 273– 282 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Wu, J.-W., Cocina, A.E., Chai, J., Hay, B.A. & Shi, Y. Structural analysis of a functional DIAP1 fragment bound to Grim and Hid peptides. Mol. Cell 8, 95– 104 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Vernooy, S.Y. et al. Cell death regulation in D. melanogaster: conservation of mechanism and unique insights. J. Cell Biol. 150, F69– F76 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Ditzel, M. et al. Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis. Nat. Cell Biol. 5, 467– 473 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Zachariou, A. et al. IAP-antagonists exhibit non-redundant modes of action through differential DIAP1 binding. EMBO J. 22, 6642– 6652 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chai, J. et al. Crystal Structure of a procaspase-7 zymogen: mechanisms of activation and substrate binding. Cell 107, 399– 407 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307– 326 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Navaza, J. AMoRe and automated package for molecular replacement. Acta Crystallogr. A 50, 157– 163 (1994).

    Article  Google Scholar 

  39. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110– 119 (1991).

    Article  PubMed  Google Scholar 

  40. Terwilliger, T.C. & Berendzen, J. Correlated phasing of multiple isomorphous replacement data. Acta Crystallogr. D 52, 749– 757 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946– 950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Walsh at CHESS for help with beam time and T.K. Vanderlick and M. Apel-Paz for help with ITC. This work was supported by US National Institutes of Health grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigong Shi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, N., Wu, JW., Chai, J. et al. Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by Reaper, Hid and Grim. Nat Struct Mol Biol 11, 420–428 (2004). https://doi.org/10.1038/nsmb764

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb764

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing