Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism

Abstract

Inflammasomes are cytosolic caspase-1-activation complexes that sense intrinsic and extrinsic danger signals, and trigger inflammatory responses and pyroptotic cell death. Homotypic interactions among Pyrin domains and caspase recruitment domains (CARDs) in inflammasome-complex components mediate oligomerization into filamentous assemblies. Several cytosolic proteins consisting of only interaction domains exert inhibitory effects on inflammasome assembly. In this study, we determined the structure of the human caspase-1 CARD domain (caspase-1CARD) filament by cryo-electron microscopy and investigated the biophysical properties of two caspase-1-like CARD-only proteins: human inhibitor of CARD (INCA or CARD17) and ICEBERG (CARD18). Our results reveal that INCA caps caspase-1 filaments, thereby exerting potent inhibition with low-nanomolar Ki on caspase-1CARD polymerization in vitro and inflammasome activation in cells. Whereas caspase-1CARD uses six complementary surfaces of three types for filament assembly, INCA is defective in two of the six interfaces and thus terminates the caspase-1 filament.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryo-EM structure determination of the caspase-1CARD filament.
Figure 2: Structural analysis of the caspase-1CARD filament.
Figure 3: ICEBERG is filamentous, whereas INCA is monomeric.
Figure 4: INCA inhibits ASCCARD-nucleated formation of caspase-1CARD filaments.
Figure 5: INCA preferentially interacts with caspase-1CARD.
Figure 6: ICEBERG interacts with caspase-1CARD by comixing.
Figure 7: Inducible expression of ICEBERG and INCA on NLRP3-inflammasome activation in modified THP-1 cells treated with LPS and nigericin (nig).
Figure 8: Comparison of critical interface residues between caspase-1CARD and INCA.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Lamkanfi, M. & Dixit, V.M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).

    CAS  PubMed  Google Scholar 

  2. Latz, E., Xiao, T.S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).

    CAS  PubMed  Google Scholar 

  3. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).

    CAS  PubMed  Google Scholar 

  4. Ferrao, R. & Wu, H. Helical assembly in the death domain (DD) superfamily. Curr. Opin. Struct. Biol. 22, 241–247 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193–1206 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cai, X. et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156, 1207–1222 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, L. et al. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350, 404–409 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hu, Z. et al. Structural and biochemical basis for induced self-propagation of NLRC4. Science 350, 399–404 (2015).

    CAS  PubMed  Google Scholar 

  9. Qu, Y. et al. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490, 539–542 (2012).

    CAS  PubMed  Google Scholar 

  10. Kofoed, E.M. & Vance, R.E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477, 592–595 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Vezzani, A., Maroso, M., Balosso, S., Sanchez, M.A. & Bartfai, T. IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav. Immun. 25, 1281–1289 (2011).

    CAS  PubMed  Google Scholar 

  12. Stehlik, C. et al. The PAAD/PYRIN-only protein POP1/ASC2 is a modulator of ASC-mediated nuclear-factor-kappa B and pro-caspase-1 regulation. Biochem. J. 373, 101–113 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bedoya, F., Sandler, L.L. & Harton, J.A. Pyrin-only protein 2 modulates NF-kappaB and disrupts ASC:CLR interactions. J. Immunol. 178, 3837–3845 (2007).

    CAS  PubMed  Google Scholar 

  14. Dorfleutner, A. et al. A Shope Fibroma virus PYRIN-only protein modulates the host immune response. Virus Genes 35, 685–694 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lamkanfi, M. et al. INCA, a novel human caspase recruitment domain protein that inhibits interleukin-1beta generation. J. Biol. Chem. 279, 51729–51738 (2004).

    CAS  PubMed  Google Scholar 

  16. Humke, E.W., Shriver, S.K., Starovasnik, M.A., Fairbrother, W.J. & Dixit, V.M. ICEBERG: a novel inhibitor of interleukin-1beta generation. Cell 103, 99–111 (2000).

    CAS  PubMed  Google Scholar 

  17. Druilhe, A., Srinivasula, S.M., Razmara, M., Ahmad, M. & Alnemri, E.S. Regulation of IL-1beta generation by Pseudo-ICE and ICEBERG, two dominant negative caspase recruitment domain proteins. Cell Death Differ. 8, 649–657 (2001).

    CAS  PubMed  Google Scholar 

  18. Le, H.T. & Harton, J.A. Pyrin- and CARD-only proteins as regulators of NLR functions. Front. Immunol. 4, 275 (2013).

    PubMed  PubMed Central  Google Scholar 

  19. Kersse, K., Vanden Berghe, T., Lamkanfi, M. & Vandenabeele, P. A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins. Biochem. Soc. Trans. 35, 1508–1511 (2007).

    CAS  PubMed  Google Scholar 

  20. Lee, S.H., Stehlik, C. & Reed, J.C. Cop, a caspase recruitment domain-containing protein and inhibitor of caspase-1 activation processing. J. Biol. Chem. 276, 34495–34500 (2001).

    CAS  PubMed  Google Scholar 

  21. da Cunha, J.P., Galante, P.A. & de Souza, S.J. Different evolutionary strategies for the origin of caspase-1 inhibitors. J. Mol. Evol. 66, 591–597 (2008).

    CAS  PubMed  Google Scholar 

  22. Wu, B. et al. Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. Mol. Cell 55, 511–523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Egelman, E.H. The iterative helical real space reconstruction method: surmounting the problems posed by real polymers. J. Struct. Biol. 157, 83–94 (2007).

    CAS  PubMed  Google Scholar 

  24. Lin, S.C., Lo, Y.C. & Wu, H. Helical assembly in the MyD88–IRAK4–IRAK2 complex in TLR/IL-1R signalling. Nature 465, 885–890 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Park, H.H. et al. Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell 128, 533–546 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu, A. et al. Plasticity in PYD assembly revealed by cryo-EM structure of the PYD filament of AIM2. Cell Discov. 1, 15013 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Guimaraes, C.P. et al. Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8, 1787–1799 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. de Alba, E. Structure and interdomain dynamics of apoptosis-associated speck-like protein containing a CARD (ASC). J. Biol. Chem. 284, 32932–32941 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsao, K.L., DeBarbieri, B., Michel, H. & Waugh, D.S. A versatile plasmid expression vector for the production of biotinylated proteins by site-specific, enzymatic modification in Escherichia coli. Gene 169, 59–64 (1996).

    CAS  PubMed  Google Scholar 

  30. Wu, H. Higher-order assemblies in a new paradigm of signal transduction. Cell 153, 287–292 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hou, F. et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448–461 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Qiao, Q. et al. Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly. Mol. Cell 51, 766–779 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. López-Castejón, G. & Pelegrín, P. Current status of inflammasome blockers as anti-inflammatory drugs. Expert Opin. Investig. Drugs 21, 995–1007 (2012).

    PubMed  Google Scholar 

  34. Brusselle, G.G., Provoost, S., Bracke, K.R., Kuchmiy, A. & Lamkanfi, M. Inflammasomes in respiratory disease: from bench to bedside. Chest 145, 1121–1133 (2014).

    CAS  PubMed  Google Scholar 

  35. Aguilera, M., Darby, T. & Melgar, S. The complex role of inflammasomes in the pathogenesis of inflammatory bowel diseases: lessons learned from experimental models. Cytokine Growth Factor Rev. 25, 715–730 (2014).

    CAS  PubMed  Google Scholar 

  36. Ridker, P.M. & Lüscher, T.F. Anti-inflammatory therapies for cardiovascular disease. Eur. Heart J. 35, 1782–1791 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Esser, N., Legrand-Poels, S., Piette, J., Scheen, A.J. & Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pract. 105, 141–150 (2014).

    CAS  PubMed  Google Scholar 

  38. Robbins, G.R., Wen, H. & Ting, J.P. Inflammasomes and metabolic disorders: old genes in modern diseases. Mol. Cell 54, 297–308 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Caldwell, J.E., Heiss, S.G., Mermall, V. & Cooper, J.A. Effects of CapZ, an actin capping protein of muscle, on the polymerization of actin. Biochemistry 28, 8506–8514 (1989).

    CAS  PubMed  Google Scholar 

  40. Lin, Y.H., Li, J., Swanson, E.R. & Russell, B. CapZ and actin capping dynamics increase in myocytes after a bout of exercise and abates in hours after stimulation ends. J. Appl. Physiol. (1985) 114, 1603–1609 (2013).

    CAS  Google Scholar 

  41. Maun, N.A., Speicher, D.W., DiNubile, M.J. & Southwick, F.S. Purification and properties of a Ca2+-independent barbed-end actin filament capping protein, CapZ, from human polymorphonuclear leukocytes. Biochemistry 35, 3518–3524 (1996).

    CAS  PubMed  Google Scholar 

  42. Cooper, J.A. Effects of cytochalasin and phalloidin on actin. J. Cell Biol. 105, 1473–1478 (1987).

    CAS  PubMed  Google Scholar 

  43. Wakatsuki, T., Schwab, B., Thompson, N.C. & Elson, E.L. Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J. Cell Sci. 114, 1025–1036 (2001).

    CAS  PubMed  Google Scholar 

  44. Carlier, M.F., Criquet, P., Pantaloni, D. & Korn, E.D. Interaction of cytochalasin D with actin filaments in the presence of ADP and ATP. J. Biol. Chem. 261, 2041–2050 (1986).

    CAS  PubMed  Google Scholar 

  45. Shaikh, T.R. et al. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat. Protoc. 3, 1941–1974 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    PubMed  Google Scholar 

  47. Scheres, S.H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  50. Pettersen, E.F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  51. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. DiMaio, F. et al. Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement. Nat. Methods 12, 361–365 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hirakawa, H., Ishikawa, S. & Nagamune, T. Design of Ca2+-independent Staphylococcus aureus sortase A mutants. Biotechnol. Bioeng. 109, 2955–2961 (2012).

    CAS  PubMed  Google Scholar 

  55. Meerbrey, K.L. et al. The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc. Natl. Acad. Sci. USA 108, 3665–3670 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by US National Institutes of Health (NIH) grants to H.W. (Pioneer Award DP1-HD-087988), to H.L.P. (Pioneer Award DP1-GM-106409), and to Q.Y. (R00: 4R00AI108793-02). F.I.S. was supported by an Advanced Postdoc.Mobility Fellowship from the Swiss National Science Foundation. The cryo-EM facility was funded through the NIH grant AI100645, Center for HIV/AIDS Vaccine Immunology and Immunogen Design (CHAVI-ID). The experiments were performed in part at the Center for Nanoscale Systems at Harvard University, a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the US National Science Foundation (NSF) under award no. ECS-0335765. We thank E. Egelman for generous guidance in methods of helical reconstruction.

Author information

Authors and Affiliations

Authors

Contributions

A.L., Y.L., F.I.S., Q.Y., S.C., T.-M.F., and Y.M. performed the experiments and analyzed the data. A.L., Q.Y., and T.-M.F. purified the recombinant proteins and performed biochemical experiments. S.C. and Y.M. collected the cryo-EM data, and Y.L. processed the data and completed the helical reconstruction. F.I.S. generated stable cell lines and performed cellular assays, and H.L.P. supervised the experiments. A.B.T. performed Rosetta refinement. A.L. and H.W. conceived the study and wrote the manuscript.

Corresponding author

Correspondence to Hao Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Cryo-EM structure determination of the caspase-1CARD filament.

(a) Enlarged experimental and simulated power spectra showing the position of the meridional layer line. (b-c) A magnified view of the cryo-EM density for helix 1 and helix 4. (d-e) Gold standard and model versus map Fourier shell correlation plots showing the estimated resolution at 4.8 Å. (f) Summary of MolProbity validation report for the caspase-1CARD filament model. (g) Superposition of the caspase-1CARD structure in the filament with the NMR structure of ICEBERG and a homology model of INCA based on the ICEBERG structure.

Supplementary Figure 2 Oligomeric His-GFP-caspase-1CARD-nucleated formation of caspase-1CARD filaments.

Supplementary Figure 3 Comparison with other helical-DD-fold structures.

(a-c) Overall best alignment of the type I, II, and III dimers in caspase-1CARD filament (cyan, magenta, and green) with those in MAVSCARD filament (gray). (d) Structural alignment of caspase-1CARD and MAVSCARD as performed by the Dali server (Holm, L. & Sander, C.,Trends Biochem. Sci. 20, 478-480, 1995). Buried interfacial residues identified by PISA (Krissinel, E. & Henrick, K., J Mol Biol 372, 774-97, 2007) for each asymmetric dimer types were highlighted to show the similarity in their relative locations. (e) Comparison of relative angular differences in the caspase-1CARD filament (cyan, magenta, and green) and in the MAVSCARD filament, the PIDDosome complex, the Myddosome complex, and the ASCPYD filament. The left subunits (Ib, IIb, and IIIb monomers) are first aligned in the respective dimers, and the rotation angles required to bring the Ia, IIa, and IIIa monomers in superposition are indicated.

Supplementary Figure 4 ICEBERG does not interact with ASCCARD.

(a) ICEBERG did not nucleate ASCCARD polymerization. (b) ICEBERG did not inhibit GFP-ASCCARD nucleated ASCCARD polymerization.

Supplementary Figure 5 Gel-filtration profiles of INCA alone, caspase-1CARD-SUMO alone, and a mixture of the two proteins.

INCA does not interact with monomeric caspase-1CARD. Size-exclusion chromatography was done at concentrations comparable to FP assay for caspase-1CARD labeled with TAMRA fluorophore and its mixture with slightly over-stoichiometric amount of INCA.

Supplementary Figure 6 A model of how INCA caps growing caspase-1CARD oligomer.

Conserved type Ia, IIa, IIIa, and IIIb interfaces allow stochastic incorporation of INCA into growing caspase-1CARD filament. Defective type Ib and IIb interfaces prevent caspase-1 recruitment and filament elongation. C1: caspase-1; I: INCA. The composite electrostatic surface and ribbon diagram at the right is complemented with a top view schematic and a side view helical plot at the right. (a) Normal activation. (b) Caspase-1CARD capped by INCA.

Supplementary Figure 7 Effect of R55E mutation on the inhibition potency of INCA.

This charge-reversal mutation at the type Ia interface greatly reduced INCA's inhibition potency on nucleated caspase-1CARD polymerization. Notably, the Ki is increased to ~1.7 μM.

Supplementary Figure 8 Mechanistic model for the inhibition of inflammasome activation by INCA.

Steps: 1. Activation of sensor proteins such as ALRs (e.g. AIM2) and NLRs (e.g. NLRP3) forms an initial PYD layer. 2. The sensor PYDs nucleate the formation of ASCPYD filaments that further recruit ASC monomers. 3. ASCCARD clusters outside of these PYD filament core. 4. Pro-caspase-1 monomers are recruited by CARD-CARD interaction to form CARD filaments. 5a. During normal activation, caspase-1 filaments elongate by recruitment of pro-caspase-1 monomers. 6. Proximity-driven dimerization and autoprocessing lead to the production of active caspase-1 dimers. 5b. In the presence of INCA, capsase-1 filaments are capped to prevent recruitment of pro-caspase-1 thereby repressing inflammasome activation.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 7612 kb)

Supplementary Data Set 1

Original gel images for Figure 2h (PDF 3613 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, A., Li, Y., Schmidt, F. et al. Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism. Nat Struct Mol Biol 23, 416–425 (2016). https://doi.org/10.1038/nsmb.3199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing