Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Optimizing membrane-protein biogenesis through nonoptimal-codon usage

Two studies provide insights into the distinct strategies used by prokaryotes and eukaryotes to pause translation in order to facilitate cotranslational targeting of membrane proteins to the translocon.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of translational pausing during membrane-protein synthesis rely on mRNA-encoded signals in both prokaryotes and eukaryotes.

References

  1. Gingold, H. & Pilpel, Y. Mol. Syst. Biol. 7, 481 (2011).

    Article  Google Scholar 

  2. Dana, A. & Tuller, T. Nucleic Acids Res. 42, 9171–9181 (2014).

    Article  CAS  Google Scholar 

  3. Gardin, J. et al. eLife 3, e03735 (2014).

    Article  Google Scholar 

  4. Spencer, P.S., Siller, E., Anderson, J.F. & Barral, J.M. J. Mol. Biol. 422, 328–335 (2012).

    Article  CAS  Google Scholar 

  5. Ingolia, N.T., Ghaemmaghami, S., Newman, J.R. & Weissman, J.S. Science 324, 218–223 (2009).

    Article  CAS  Google Scholar 

  6. Li, G.W., Oh, E. & Weissman, J.S. Nature 484, 538–541 (2012).

    Article  CAS  Google Scholar 

  7. Tuller, T. et al. Cell 141, 344–354 (2010).

    Article  CAS  Google Scholar 

  8. Pechmann, S. & Frydman, J. Nat. Struct. Mol. Biol. 20, 237–243 (2013).

    Article  CAS  Google Scholar 

  9. Zhang, G., Hubalewska, M. & Ignatova, Z. Nat. Struct. Mol. Biol. 16, 274–280 (2009).

    Article  CAS  Google Scholar 

  10. Fluman, N., Navon, S., Bibi, E. & Pilpel, Y. eLife 3, e03440 (2014).

    Article  Google Scholar 

  11. Pechmann, S., Chartron, J. & Frydman, J. Nat. Struct. Mol. Biol. 21, 1100–1105 (2014).

    Article  CAS  Google Scholar 

  12. Akopian, D., Shen, K., Zhang, X. & Shan, S.O. Annu. Rev. Biochem. 82, 693–721 (2013).

    Article  CAS  Google Scholar 

  13. Halic, M. et al. Nature 427, 808–814 (2004).

    Article  CAS  Google Scholar 

  14. del Alamo, M. et al. PLoS Biol. 9, e1001100 (2011).

    Article  CAS  Google Scholar 

  15. Pechmann, S., Willmund, F. & Frydman, J. Mol. Cell 49, 411–421 (2013).

    Article  CAS  Google Scholar 

  16. Hegde, R.S. & Keenan, R.J. Nat. Rev. Mol. Cell Biol. 12, 787–798 (2011).

    Article  CAS  Google Scholar 

  17. Ast, T., Cohen, G. & Schuldiner, M. Cell 152, 1134–1145 (2013).

    Article  CAS  Google Scholar 

  18. Amunts, A. et al. Science 343, 1485–1489 (2014).

    Article  CAS  Google Scholar 

  19. Weatheritt, R.J., Gibson, T.J. & Babu, M.M. Nat. Struct. Mol. Biol. 21, 833–839 (2014).

    Article  CAS  Google Scholar 

  20. Sossin, W.S. & DesGroseillers, L. Traffic 7, 1581–1589 (2006).

    Article  CAS  Google Scholar 

  21. Xue, S. & Barna, M. Nat. Rev. Mol. Cell Biol. 13, 355–369 (2012).

    Article  CAS  Google Scholar 

  22. Qian, W., Yang, J.R., Pearson, N.M., Maclean, C. & Zhang, J. PLoS Genet. 8, e1002603 (2012).

    Article  CAS  Google Scholar 

  23. Gingold, H. et al. Cell 158, 1281–1292 (2014).

    Article  CAS  Google Scholar 

  24. Novoa, E.M. & Ribas de Pouplana, L. Trends Genet. 28, 574–581 (2012).

    Article  CAS  Google Scholar 

  25. Yona, A.H. et al. eLife 2, e01339 (2013).

    Article  Google Scholar 

  26. Weatheritt, R.J. & Babu, M.M. Science 342, 1325–1326 (2013).

    Article  CAS  Google Scholar 

  27. Shoval, O. et al. Science 336, 1157–1160 (2012).

    Article  CAS  Google Scholar 

  28. Sauna, Z.E. & Kimchi-Sarfaty, C. Nat. Rev. Genet. 12, 683–691 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Hegde, B. Santhanam, T. Flock, N.S. Latysheva, J.T. Harbrecht, G. Chalancon and M. Torrent for their feedback. This work was supported by the UK Medical Research Council (MC_U105185859; A.S.M. and M.M.B.) and The Lister Institute of Preventive Medicine (M.M.B.). M.M.B. is supported as a Lister Institute Research Prize Fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexey S Morgunov or M Madan Babu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgunov, A., Babu, M. Optimizing membrane-protein biogenesis through nonoptimal-codon usage. Nat Struct Mol Biol 21, 1023–1025 (2014). https://doi.org/10.1038/nsmb.2926

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2926

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing