Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

RPA puts the brakes on MMEJ

Microhomology-mediated end joining (MMEJ) is a mechanism of DNA double-strand-break repair that creates deletions and promotes other types of genome instability. New in vivo and in vitro analyses demonstrate that the heterotrimeric replication protein A (RPA) complex prevents spontaneous annealing of microhomologies, thereby preventing genome-destabilizing MMEJ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RPA has a central role in pathway choice in double-strand-break repair.

References

  1. Zhang, Y. & Jasin, M. Nat. Struct. Mol. Biol. 18, 80–84 (2011).

    Article  CAS  Google Scholar 

  2. Povirk, L.F. DNA Repair (Amst.) 5, 1199–1212 (2006).

    Article  CAS  Google Scholar 

  3. Deng, S. et al. Nat. Struct. Mol. Biol. 21, 405–412 (2014).

    Article  CAS  Google Scholar 

  4. Ma, J.L. et al. Mol. Cell. Biol. 23, 8820–8828 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee, K. & Lee, S.E. Genetics 176, 2003–2014 (2007).

    Article  CAS  Google Scholar 

  6. Fattah, F. et al. PLoS Genet. 6, e1000855 (2010).

    Article  Google Scholar 

  7. Symington, L.S. & Gautier, J. Annu. Rev. Genet. 45, 247–271 (2011).

    Article  CAS  Google Scholar 

  8. Truong, L.N. et al. Proc. Natl. Acad. Sci. USA 110, 7720–7725 (2013).

    Article  CAS  Google Scholar 

  9. Grabarz, A. et al. Am. J. Cancer Res. 2, 249–268 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sugiyama, T., New, J.H. & Kowalczykowski, S.C. Proc. Natl. Acad. Sci. USA 95, 6049–6054 (1998).

    Article  CAS  Google Scholar 

  11. Smith, J. & Rothstein, R. Mol. Cell. Biol. 15, 1632–1641 (1995).

    Article  CAS  Google Scholar 

  12. Smith, J. & Rothstein, R. Genetics 151, 447–458 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Umezu, K. et al. Genetics 148, 989–1005 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Prakash, A. & Borgstahl, G.E. Subcell. Biochem. 62, 171–196 (2012).

    Article  CAS  Google Scholar 

  15. Chen, S.H. et al. J. Biol. Chem. 285, 12803–12812 (2010).

    Article  CAS  Google Scholar 

  16. Oakley, G.G. & Patrick, S.M. Front. Biosci. (Landmark Ed.) 15, 883–900 (2010).

    Article  CAS  Google Scholar 

  17. Decottignies, A. Front. Genet. 4, 48 (2013).

    Article  Google Scholar 

  18. McVey, M. & Lee, S.E. Trends Genet. 24, 529–538 (2008).

    Article  CAS  Google Scholar 

  19. Taylor, E.M. et al. Nucleic Acids Res. 38, 441–454 (2010).

    Article  CAS  Google Scholar 

  20. Mansour, W.Y., Rhein, T. & Dahm-Daphi, J. Nucleic Acids Res. 38, 6065–6077 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitch McVey.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McVey, M. RPA puts the brakes on MMEJ. Nat Struct Mol Biol 21, 348–349 (2014). https://doi.org/10.1038/nsmb.2802

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2802

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing