Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Translocation at work

Translocation is an essential step of protein synthesis in which the large tRNA2–mRNA complex inside the ribosome moves from the A and P sites to the P and E sites, respectively, bringing a new mRNA codon into the decoding center. This process is catalyzed by the elongation factor EF-G–GTP (eEF2 in eukaryotes) and is the least understood stage of peptide elongation. Four new reports describe the crystal structures of translocation intermediates, illustrating important details of the translocation reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elongation cycle.
Figure 2: Overview of what was previously known about the translocation step.
Figure 3: Overview of new insights into the translocation step.

References

  1. Dabrowski, M., Spahn, C.M.T. & Nierhaus, K.H. EMBO J. 14, 4872–4882 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alexeeva, E.V., Shpanchenko, O.V., Dontsova, O.A., Bogdanov, A.A. & Nierhaus, K.H. Nucleic Acids Res. 24, 2228–2235 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Frank, J. & Agrawal, R.K. Nature 406, 318–322 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Connell, S.R. et al. Mol. Cell 25, 751–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Budkevich, T.V., El'skaya, A.V. & Nierhaus, K.H. Nucleic Acids Res. 36, 4736–4744 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ratje, A.H. et al. Nature 468, 713–716 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Valle, M. et al. Cell 114, 123–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Fei, J., Kosuri, P., MacDougall, D.D. & Gonzalez, R.L. Jr. Mol. Cell 30, 348–359 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Munro, J.B. et al. Proc. Natl. Acad. Sci. USA 107, 709–714 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Schuwirth, B.S. et al. Science 310, 827–834 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Gao, Y.G. et al. Science 326, 694–699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feng, S., Chen, Y. & Gao, Y.G. PLoS ONE 8, e58829 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cukras, A.R., Southworth, D.R., Brunelle, J.L., Culver, G.M. & Green, R. Mol. Cell 12, 321–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, Q. & Fredrick, K. Nucleic Acids Res. 41, 565–574 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, C. et al. Mol. Cell 42, 367–377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dorner, S., Brunelle, J.L., Sharma, D. & Green, R. Nat. Struct. Mol. Biol. 13, 234–241 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, Y., Feng, S., Kumar, V. & Gao, Y.-G. Nat. Struct. Mol. Biol. 20, 1077–1084 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Tourigny, D.S., Fernandez, I.S., Kelley, A.C. & Ramakrishnan, V. Science 340, doi:10.1126/science.1235490 (28 June 2013).

  19. Zhou, J., Lancaster, L., Donohue, J.P. & Noller, H.F. Science 340, doi:10.1126/science.1236086 (28 June 2013).

  20. Pulk, A. & Cate, J.H. Science 340, doi:10.1126/science.1235970 (28 June 2013).

  21. Modolell, J. & Vazquez, D. Eur. J. Biochem. 81, 491–497 (1977).

    Article  CAS  PubMed  Google Scholar 

  22. Endo, Y. & Wool, I.G. J. Biol. Chem. 257, 9054–9060 (1982).

    CAS  PubMed  Google Scholar 

  23. Hausner, T.P., Atmadja, J. & Nierhaus, K.H. Biochimie 69, 911–923 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Berchtold, H. et al. Nature 365, 126–132 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Schmeing, T.M. et al. Science 326, 688–694 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou, J., Lancaster, L., Trakhanov, S. & Noller, H.F. RNA 18, 230–240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Voorhees, R.M., Schmeing, T.M., Kelley, A.C. & Ramakrishnan, V. Science 330, 835–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liljas, A., Ehrenberg, M. & Aqvist, J. Science 333, 37 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Adamczyk, A.J. & Warshel, A. Proc. Natl. Acad. Sci. USA 108, 9827–9832 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Agirrezabala, X. et al. Proc. Natl. Acad. Sci. USA 109, 6094–6099 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knud H Nierhaus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achenbach, J., Nierhaus, K. Translocation at work. Nat Struct Mol Biol 20, 1019–1022 (2013). https://doi.org/10.1038/nsmb.2661

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2661

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing