Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BID-induced structural changes in BAK promote apoptosis

Abstract

The BCL-2–family protein BAK is responsible for mitochondrial outer-membrane permeabilization (MOMP), which leads to apoptosis. The BCL-2 homology 3 (BH3)-only protein BID activates BAK to perform this function. We report the NMR solution structure of the human BID BH3–BAK complex, which identified the activation site at the canonical BH3-binding groove of BAK. Mutating the BAK BH1 in the groove prevented activation and MOMP but not the binding of BID. BAK BH3 mutations allowed BID binding and activation but blunted function by blocking BAK oligomerization. BAK activation follows a 'hit-and-run' mechanism whereby BID dissociates from the trigger site, which allows BAK oligomerization at an overlapping interface. In contrast, the BH3-only proteins NOXA and BAD are predicted to clash with the trigger site and are not activators of BAK. These findings provide insights into the early stages of BAK activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BID BH3 binds the BC groove to directly activate BAK.
Figure 2: BID induces opening of the occluded BC groove in BAK.
Figure 3: Molecular determinants for BAK direct activation extend throughout BID BH3.
Figure 4: Activator–effector complexes support a hit-and-run activation mechanism.
Figure 5: Direct activation and oligomerization separated by point mutations in BAK.
Figure 6: NOXA and BAD are not direct activators of BAK.
Figure 7: Direct activation triggers BAK-mediated MOMP.

Similar content being viewed by others

Accession codes

Primary accessions

Biological Magnetic Resonance Data Bank

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Green, D.R. Apoptotic pathways: ten minutes to dead. Cell 121, 671–674 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Jiang, X. & Wang, X. Cytochrome C-mediated apoptosis. Annu. Rev. Biochem. 73, 87–106 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Tait, S.W. & Green, D.R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Kuwana, T. et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wei, M.C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dewson, G. et al. To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions. Mol. Cell 30, 369–380 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Dewson, G. et al. Bax dimerizes via a symmetric BH3:groove interface during apoptosis. Cell Death Differ. 19, 661–670 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Chipuk, J.E., Moldoveanu, T., Llambi, F., Parsons, M.J. & Green, D.R. The BCL-2 family reunion. Mol. Cell 37, 299–310 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Llambi, F. et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol. Cell 44, 517–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chipuk, J.E. & Green, D.R. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 18, 157–164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walensky, L.D. & Gavathiotis, E. BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem. Sci. 36, 642–652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Westphal, D., Dewson, G., Czabotar, P.E. & Kluck, R.M. Molecular biology of Bax and Bak activation and action. Biochim. Biophys. Acta 1813, 521–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Certo, M. et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9, 351–365 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Bird, G.H., Bernal, F., Pitter, K. & Walensky, L.D. Synthesis and biophysical characterization of stabilized α-helices of BCL-2 domains. Methods Enzymol. 446, 369–386 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gavathiotis, E., Reyna, D.E., Davis, M.L., Bird, G.H. & Walensky, L.D. BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol. Cell 40, 481–492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gavathiotis, E. et al. BAX activation is initiated at a novel interaction site. Nature 455, 1076–1081 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moldoveanu, T. et al. The X-ray structure of a BAK homodimer reveals an inhibitory zinc binding site. Mol. Cell 24, 677–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, Y.W., Grossmann, T.N. & Verdine, G.L. Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat. Protoc. 6, 761–771 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Walensky, L.D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gräslund, S. et al. The use of systematic N- and C-terminal deletions to promote production and structural studies of recombinant proteins. Protein Expr. Purif. 58, 210–221 (2008).

    Article  PubMed  Google Scholar 

  22. Wang, H. et al. Novel dimerization mode of the human Bcl-2 family protein Bak, a mitochondrial apoptosis regulator. J. Struct. Biol. 166, 32–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Gross, A. et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274, 1156–1163 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Ku, B., Liang, C., Jung, J.U. & Oh, B.H. Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res. 21, 627–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Letai, A.G. Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nat. Rev. Cancer 8, 121–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Wei, M.C. et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060–2071 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Dai, H. et al. Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. J. Cell Biol. 194, 39–48 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Strasser, A., Jost, P.J. & Nagata, S. The many roles of FAS receptor signaling in the immune system. Immunity 30, 180–192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, H. et al. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol. Cell 36, 487–499 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ren, D. et al. BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330, 1390–1393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Du, H. et al. BH3 domains other than Bim and Bid can directly activate Bax/Bak. J. Biol. Chem. 286, 491–501 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Czabotar, P.E. et al. Bax crystal structures reveal how BH3 domains activate bax and nucleate its oligomerization to induce apoptosis. Cell 152, 519–531 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Leshchiner, E.S., Braun, C.R., Bird, G.H. & Walensky, L.D. Direct activation of full-length proapoptotic BAK. Proc. Natl. Acad. Sci. USA 110, E986–E995 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ferrer, P.E., Frederick, P., Gulbis, J.M., Dewson, G. & Kluck, R.M. Translocation of a Bak C-terminus mutant from cytosol to mitochondria to mediate cytochrome C release: implications for Bak and Bax apoptotic function. PLoS ONE 7, e31510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oh, K.J. et al. Conformational changes in BAK, a pore-forming proapoptotic Bcl-2 family member, upon membrane insertion and direct evidence for the existence of BH3–BH3 contact interface in BAK homo-oligomers. J. Biol. Chem. 285, 28924–28937 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dewson, G. et al. Bak activation for apoptosis involves oligomerization of dimers via their α6 helices. Mol. Cell 36, 696–703 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Lovell, J.F. et al. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 135, 1074–1084 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Edlich, F. et al. Bcl-xL retrotranslocates Bax from the mitochondria into the cytosol. Cell 145, 104–116 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Montessuit, S. et al. Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142, 889–901 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, X. et al. Generation of mammalian cells stably expressing multiple genes at predetermined levels. Anal. Biochem. 280, 20–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Denisov, A.Y. et al. Structural model of the BCL-w-BID peptide complex and its interactions with phospholipid micelles. Biochemistry 45, 2250–2256 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Moldoveanu, T., Gehring, K. & Green, D.R. Concerted multi-pronged attack by calpastatin to occlude the catalytic cleft of heterodimeric calpains. Nature 456, 404–408 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moldoveanu, T. et al. A Ca2+ switch aligns the active site of calpain. Cell 108, 649–660 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Verdine, G.L. & Hilinski, G.J. Stapled peptides for intracellular drug targets. Methods Enzymol. 503, 3–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Hill, J.M. NMR screening for rapid protein characterization in structural proteomics. Methods Mol. Biol. 426, 437–446 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  48. Keller, R. The computer aided resonance assignment tutorial. (CANTINA Verlag, Goldau, Switzerland, 2004).

  49. Guerry, P. & Herrmann, T. Comprehensive automation for NMR structure determination of proteins. Methods Mol. Biol. 831, 429–451 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Güntert, P., Mumenthaler, C. & Wuthrich, K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

    Article  PubMed  Google Scholar 

  51. Laue, T.M., Shah, B.D., Ridgeway, T.M. & Pelletier, S.L. Computer-aided interpretation of analytical sedimentation data for proteins. in Analytical Ultracentrifugation in Biochemistry and Polymer Science (eds. Harding, S.E., Rowe, A.J. & Horton, J.C.) 90–125 (The Royal Society of Chemistry, 1992).

  52. Brown, P.H., Balbo, A. & Schuck, P. Characterizing protein-protein interactions by sedimentation velocity analytical ultracentrifugation. Curr. Protoc. Immunol. 81, 18.15 (2008).

    Google Scholar 

  53. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Balbo, A., Brown, P.H., Braswell, E.H. & Schuck, P. Measuring protein-protein interactions by equilibrium sedimentation. Curr. Protoc. Immunol. 81, 18.8 (2007).

    Google Scholar 

Download references

Acknowledgements

We thank C. Dillon, L. McCormick and M. Yang for managing the mouse colony, R. Cassell and P. Rodriques of the St. Jude Hartwell Center for producing the peptides and R. Cross and G. Lennon of the St. Jude Flow Cytometry facility for cell sorting. This work was supported by US National Institutes of Health grants AI40646, GM52735 and GM096208 (D.R.G.) and R01CA082491 and 1R01GM083159 (R.W.K.) and by the American Lebanese Syrian Associated Charities.

Author information

Authors and Affiliations

Authors

Contributions

T.M., C.R.G., K.G. and R.W.K. contributed the NMR analyses, T.M., F.L. and P.F. the biochemical analyses and T.M. and A.N. the AUC analyses. All authors contributed conceptually to various aspects of the project. T.M., R.W.K. and D.R.G. wrote the manuscript.

Corresponding author

Correspondence to Douglas R Green.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–2 and Supplementary Note (PDF 1699 kb)

Supplementary Movie 1

Movie captures the conformational changes of apo to SAHBa–bound cBAK described in Fig. 2 andSupplementary Fig. 2. LSQMAN3 was used to generate the frames and Pymol to render them. (AVI 9300 kb)

Supplementary Movie 2

Movie captures the conformational changes of apo to SAHBa–bound cBAK from a side viewcompared to that of Supplementary Movie 1. (AVI 12207 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moldoveanu, T., Grace, C., Llambi, F. et al. BID-induced structural changes in BAK promote apoptosis. Nat Struct Mol Biol 20, 589–597 (2013). https://doi.org/10.1038/nsmb.2563

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing