Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7–Atg3 and Atg7–Atg10 structures

Abstract

Core functions of autophagy are mediated by ubiquitin-like protein (UBL) cascades, in which a homodimeric E1 enzyme, Atg7, directs the UBLs Atg8 and Atg12 to their respective E2 enzymes, Atg3 and Atg10. Crystallographic and mutational analyses of yeast (Atg7–Atg3)2 and (Atg7–Atg10)2 complexes reveal noncanonical, multisite E1-E2 recognition in autophagy. Atg7's unique N-terminal domain recruits distinctive elements from the Atg3 and Atg10 'backsides'. This, along with E1 and E2 conformational variability, allows presentation of 'frontside' Atg3 and Atg10 active sites to the catalytic cysteine in the C-terminal domain from the opposite Atg7 protomer in the homodimer. Despite different modes of binding, the data suggest that common principles underlie conjugation in both noncanonical and canonical UBL cascades, whereby flexibly tethered E1 domains recruit E2s through surfaces remote from their active sites to juxtapose the E1 and E2 catalytic cysteines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structures of the autophagy E1 Atg7 and E2s Atg3 and Atg10.
Figure 2: Overall trans architectures of autophagy E1–E2 complexes.
Figure 3: Atg7NTD shoulder groove interactions with autophagy E2s.
Figure 4: Atg7 under-wing and NTD-CTD–junction interactions with Atg3's backside and edge.
Figure 5: Atg7 under-wing and NTD-CTD junction interactions with Atg10's backside and edge.
Figure 6: The Atg7, Atg3 and Atg10 catalytic-cysteine loops: autophagy E1 and E2 active site conformational variability.
Figure 7: Models of autophagy UBL–E1–E2 complexes.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Ohsumi, Y. & Mizushima, N. Two ubiquitin-like conjugation systems essential for autophagy. Semin. Cell Dev. Biol. 15, 231–236 (2004).

    Article  CAS  Google Scholar 

  2. Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458–467 (2009).

    Article  CAS  Google Scholar 

  3. Geng, J. & Klionsky, D.J. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. EMBO Rep. 9, 859–864 (2008).

    Article  CAS  Google Scholar 

  4. Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505–516 (2009).

    Article  CAS  Google Scholar 

  5. Lamark, T., Kirkin, V., Dikic, I. & Johansen, T. NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8, 1986–1990 (2009).

    Article  CAS  Google Scholar 

  6. Hanada, T. et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282, 37298–37302 (2007).

    Article  CAS  Google Scholar 

  7. Suzuki, K. et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20, 5971–5981 (2001).

    Article  CAS  Google Scholar 

  8. Mizushima, N. et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol. 152, 657–668 (2001).

    Article  CAS  Google Scholar 

  9. Kuma, A., Mizushima, N., Ishihara, N. & Ohsumi, Y. Formation of the approximately 350-kDa Apg12-Apg5·Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem. 277, 18619–18625 (2002).

    Article  CAS  Google Scholar 

  10. Suzuki, K. & Ohsumi, Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett. 581, 2156–2161 (2007).

    Article  CAS  Google Scholar 

  11. Fujita, N. et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19, 2092–2100 (2008).

    Article  CAS  Google Scholar 

  12. Shintani, T. & Klionsky, D.J. Autophagy in health and disease: a double-edged sword. Science 306, 990–995 (2004).

    Article  CAS  Google Scholar 

  13. Kundu, M. & Thompson, C.B. Autophagy: basic principles and relevance to disease. Annu. Rev. Pathol. 3, 427–455 (2008).

    Article  CAS  Google Scholar 

  14. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  Google Scholar 

  15. Mizushima, N., Levine, B., Cuervo, A.M. & Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  Google Scholar 

  16. Schulman, B.A. & Harper, J.W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10, 319–331 (2009).

    Article  CAS  Google Scholar 

  17. Walden, H. et al. The structure of the APPBP1–UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol. Cell 12, 1427–1437 (2003).

    Article  CAS  Google Scholar 

  18. Walden, H., Podgorski, M.S. & Schulman, B.A. Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Nature 422, 330–334 (2003).

    Article  CAS  Google Scholar 

  19. Lois, L.M. & Lima, C.D. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 24, 439–451 (2005).

    Article  CAS  Google Scholar 

  20. Lee, I. & Schindelin, H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 134, 268–278 (2008).

    Article  CAS  Google Scholar 

  21. Taherbhoy, A.M. et al. Atg8 transfer from Atg7 to Atg3: a distinctive E1–E2 architecture and mechanism in the autophagy pathway. Mol. Cell 44, 451–461 (2011).

    Article  CAS  Google Scholar 

  22. Noda, N.N. et al. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell 44, 462–475 (2011).

    Article  CAS  Google Scholar 

  23. Hong, S.B. et al. Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat. Struct. Mol. Biol. 18, 1323–1330 (2011).

    Article  CAS  Google Scholar 

  24. Olsen, S.K., Capili, A.D., Lu, X., Tan, D.S. & Lima, C.D. Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature 463, 906–912 (2010).

    Article  CAS  Google Scholar 

  25. Huang, D.T. et al. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Mol. Cell 17, 341–350 (2005).

    Article  CAS  Google Scholar 

  26. Tokgöz, Z. et al. E1–E2 interactions in ubiquitin and Nedd8 ligation pathways. J. Biol. Chem. 287, 311–321 (2012).

    Article  Google Scholar 

  27. Yamada, Y. et al. The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J. Biol. Chem. 282, 8036–8043 (2007).

    Article  CAS  Google Scholar 

  28. Yamaguchi, M. et al. Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure 20, 1244–1254 (2012).

    Article  CAS  Google Scholar 

  29. Noda, T., Matsuura, A., Wada, Y. & Ohsumi, Y. Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 210, 126–132 (1995).

    Article  CAS  Google Scholar 

  30. Shintani, T. & Klionsky, D.J. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J. Biol. Chem. 279, 29889–29894 (2004).

    Article  CAS  Google Scholar 

  31. Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000).

    Article  CAS  Google Scholar 

  32. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    Article  CAS  Google Scholar 

  33. Tanida, I., Tanida-Miyake, E., Komatsu, M., Ueno, T. & Kominami, E. Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J. Biol. Chem. 277, 13739–13744 (2002).

    Article  CAS  Google Scholar 

  34. Radoshevich, L. et al. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 142, 590–600 (2010).

    Article  CAS  Google Scholar 

  35. Brzovic, P.S., Lissounov, A., Christensen, D.E., Hoyt, D.W. & Klevit, R.E.A. UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol. Cell 21, 873–880 (2006).

    Article  CAS  Google Scholar 

  36. Capili, A.D. & Lima, C.D. Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. J. Mol. Biol. 369, 608–618 (2007).

    Article  CAS  Google Scholar 

  37. Duda, D.M. et al. Structure of a SUMO-binding-motif mimic bound to Smt3p-Ubc9p: conservation of a non-covalent ubiquitin-like protein-E2 complex as a platform for selective interactions within a SUMO pathway. J. Mol. Biol. 369, 619–630 (2007).

    Article  CAS  Google Scholar 

  38. Knipscheer, P., van Dijk, W.J., Olsen, J.V., Mann, M. & Sixma, T.K. Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO J. 26, 2797–2807 (2007).

    Article  CAS  Google Scholar 

  39. Das, R. et al. Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Mol. Cell 34, 674–685 (2009).

    Article  CAS  Google Scholar 

  40. Li, W. et al. Mechanistic insights into active site-associated polyubiquitination by the ubiquitin-conjugating enzyme Ube2g2. Proc. Natl. Acad. Sci. USA 106, 3722–3727 (2009).

    Article  CAS  Google Scholar 

  41. Hibbert, R.G., Huang, A., Boelens, R. & Sixma, T.K. E3 ligase Rad18 promotes monoubiquitination rather than ubiquitin chain formation by E2 enzyme Rad6. Proc. Natl. Acad. Sci. USA 108, 5590–5595 (2011).

    Article  CAS  Google Scholar 

  42. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  43. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  44. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  45. Fenn, T.D. & Schnieders, M.J. Polarizable atomic multipole X-ray refinement: weighting schemes for macromolecular diffraction. Acta Crystallogr. D Biol. Crystallogr. 67, 957–965 (2011).

    Article  CAS  Google Scholar 

  46. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  47. Labbé, S. & Thiele, D.J. Copper ion inducible and repressible promoter systems in yeast. Methods Enzymol. 306, 145–153 (1999).

    Article  Google Scholar 

  48. Kim, J., Huang, W.-P., Stromhaug, P.E. & Klionsky, D.J. Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J. Biol. Chem. 277, 763–773 (2002).

    Article  CAS  Google Scholar 

  49. Geng, J., Nair, U., Yasumura-Yorimitsu, K. & Klionsky, D.J. Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell 21, 2257–2269 (2010).

    Article  CAS  Google Scholar 

  50. Robinson, J.S., Klionsky, D.J., Banta, L.M. & Emr, S.D. Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol. Cell Biol. 8, 4936–4948 (1988).

    Article  CAS  Google Scholar 

  51. Kanki, T. et al. A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol. Biol. Cell 20, 4730–4738 (2009).

    Article  CAS  Google Scholar 

  52. Yen, W.-L. et al. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J. Cell Biol. 188, 101–114 (2010).

    Article  CAS  Google Scholar 

  53. Klionsky, D.J., Cuervo, A.M. & Seglen, P.O. Methods for monitoring autophagy from yeast to human. Autophagy 3, 181–206 (2007).

    Article  CAS  Google Scholar 

  54. Cheong, H. & Klionsky, D.J. Biochemical methods to monitor autophagy-related processes in yeast. Methods Enzymol. 451, 1–26 (2008).

    Article  CAS  Google Scholar 

  55. Huang, W.-P., Scott, S.V., Kim, J. & Klionsky, D.J. The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J. Biol. Chem. 275, 5845–5851 (2000).

    Article  CAS  Google Scholar 

  56. Kim, J., Huang, W.-P. & Klionsky, D.J. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J. Cell Biol. 152, 51–64 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by American Lebanese Syrian Associated Charities (ALSAC), the Howard Hughes Medical Institute, St. Jude Cancer Center grant 5P30CA021765 and US National Institutes of Health (NIH) grant R01GM077053 to B.A.S. and NIH grant R01GM053396 to D.J.K. B.A.S. is an Investigator of the Howard Hughes Medical Institute. We are grateful to C. Regni and A. Williams for help in early stages of this project, M. Frank and C. Rock (St. Jude Children's Research Hospital, Memphis, Tennessee, USA) for providing liposomes and D.W. Miller, S. Bozeman, D.J. Miller, Y. Qiu and J. Bollinger for administrative, computational or technical support. The Northeastern Collaborative Access Team is supported by NIH National Center for Research Resources RR-15301, Advanced Photon Source (APS) by US Department of Energy (US DOE) W-31-109-ENG-38, Advanced Light Source (ALS) by US DOE DE-AC02-05CH11231. Anti-Pgk1 antibody was provided by J. Thorner (University of California, Berkeley, California, USA).

Author information

Authors and Affiliations

Authors

Contributions

S.E.K., J.L.O., D.M.D., I.K. and T.D.F. performed the X-ray crystallography experiments. S.E.K., A.M.T., S.Y., J.L.O. and A.D. purified wild-type and mutant proteins and performed in vitro biochemical assays. K.M. performed all yeast experiments. B.A.S., along with S.E.K. and D.J.K., oversaw experiments and prepared the manuscript with input from all authors.

Corresponding author

Correspondence to Brenda A Schulman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 9995 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, S., Mao, K., Taherbhoy, A. et al. Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7–Atg3 and Atg7–Atg10 structures. Nat Struct Mol Biol 19, 1242–1249 (2012). https://doi.org/10.1038/nsmb.2415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2415

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing